Configuring databases for efficient querying is a complex task, often carried out by a database administrator. Solving the problem of building indexes that truly optimize database access requires a substantial amount of database and domain knowledge, the lack of which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing database performance for querying and certainly degrading performance for updating. We develop an architecture to solve the problem of automatically indexing a database by using reinforcement learning to optimize queries by indexing data throughout the lifetime of a database. In our experimental evaluation, our architecture shows superior performance compared to related work on reinforcement learning and genetic algorithms, maintaining near-optimal index configurations and efficiently scaling to large databases.

Automated database indexing using model-free reinforcement learning / Paludo Licks, G.; Meneguzzi, F.. - (2020). (Intervento presentato al convegno arXiv preprint tenutosi a Online).

Automated database indexing using model-free reinforcement learning

Paludo Licks, G.
;
2020

Abstract

Configuring databases for efficient querying is a complex task, often carried out by a database administrator. Solving the problem of building indexes that truly optimize database access requires a substantial amount of database and domain knowledge, the lack of which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing database performance for querying and certainly degrading performance for updating. We develop an architecture to solve the problem of automatically indexing a database by using reinforcement learning to optimize queries by indexing data throughout the lifetime of a database. In our experimental evaluation, our architecture shows superior performance compared to related work on reinforcement learning and genetic algorithms, maintaining near-optimal index configurations and efficiently scaling to large databases.
2020
arXiv preprint
reinforcement learning; database; indexing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Automated database indexing using model-free reinforcement learning / Paludo Licks, G.; Meneguzzi, F.. - (2020). (Intervento presentato al convegno arXiv preprint tenutosi a Online).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670729
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact