Configuring databases for efficient querying is a complex task, often carried out by a database administrator. Solving the problem of building indexes that truly optimize database access requires a substantial amount of database and domain knowledge, the lack of which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing database performance for querying and certainly degrading performance for updating. In this paper, we develop the SMARTIX architecture to solve the problem of automatically indexing a database by using reinforcement learning to optimize queries by indexing data throughout the lifetime of a database. We train and evaluate SMARTIX performance using TPC-H, a standard, and scalable database benchmark. Our empirical evaluation shows that SMARTIX converges to indexing configurations with superior performance compared to standard baselines we define and other reinforcement learning methods used in related work.

SmartIX: A database indexing agent based on reinforcement learning / Paludo Licks, G.; Colleoni Couto, J.; de Fátima Miehe, P.; de Paris, R.; Dubugras Ruiz, D.; Meneguzzi, F.. - In: APPLIED INTELLIGENCE. - ISSN 1573-7497. - 50:8(2020), pp. 2575-2588. (Intervento presentato al convegno Applied Intelligence volume 50 issue 8 tenutosi a Online) [10.1007/s10489-020-01674-8].

SmartIX: A database indexing agent based on reinforcement learning

Paludo Licks, G.
;
2020

Abstract

Configuring databases for efficient querying is a complex task, often carried out by a database administrator. Solving the problem of building indexes that truly optimize database access requires a substantial amount of database and domain knowledge, the lack of which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing database performance for querying and certainly degrading performance for updating. In this paper, we develop the SMARTIX architecture to solve the problem of automatically indexing a database by using reinforcement learning to optimize queries by indexing data throughout the lifetime of a database. We train and evaluate SMARTIX performance using TPC-H, a standard, and scalable database benchmark. Our empirical evaluation shows that SMARTIX converges to indexing configurations with superior performance compared to standard baselines we define and other reinforcement learning methods used in related work.
2020
Applied Intelligence volume 50 issue 8
artificial intelligence; reinforcement learning; database; indexing
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
SmartIX: A database indexing agent based on reinforcement learning / Paludo Licks, G.; Colleoni Couto, J.; de Fátima Miehe, P.; de Paris, R.; Dubugras Ruiz, D.; Meneguzzi, F.. - In: APPLIED INTELLIGENCE. - ISSN 1573-7497. - 50:8(2020), pp. 2575-2588. (Intervento presentato al convegno Applied Intelligence volume 50 issue 8 tenutosi a Online) [10.1007/s10489-020-01674-8].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact