This issue 4 of volume 16 (2022) of the journal Advances in Data Analysis and Classification (ADAC) contains 9 articles that deal with artificial intelligence and statistics, classification methods, dissimilarity functions, quantile composite-based path modeling, sparse dimension reduction, the minimum weighted covariance determinant estimator, least-squares bilinear clustering, polynomial approximate discretization of geometric centers, and independence versus indetermination. At the end of the issue, we also publish the “corrections” of three papers received by their authors.

Editorial for ADAC issue 4 of volume 16 (2022) / Vichi, M.; Ceroli, A.; Kestler, H. A.; Okada, A.; Weihs, C.. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5355. - 16:4(2022), pp. 817-821. [10.1007/s11634-022-00525-3]

Editorial for ADAC issue 4 of volume 16 (2022)

Vichi M.
;
2022

Abstract

This issue 4 of volume 16 (2022) of the journal Advances in Data Analysis and Classification (ADAC) contains 9 articles that deal with artificial intelligence and statistics, classification methods, dissimilarity functions, quantile composite-based path modeling, sparse dimension reduction, the minimum weighted covariance determinant estimator, least-squares bilinear clustering, polynomial approximate discretization of geometric centers, and independence versus indetermination. At the end of the issue, we also publish the “corrections” of three papers received by their authors.
2022
Classification, Clustering, Data Analysis
01 Pubblicazione su rivista::01m Editorial/Introduzione in rivista
Editorial for ADAC issue 4 of volume 16 (2022) / Vichi, M.; Ceroli, A.; Kestler, H. A.; Okada, A.; Weihs, C.. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5355. - 16:4(2022), pp. 817-821. [10.1007/s11634-022-00525-3]
File allegati a questo prodotto
File Dimensione Formato  
Vichi_editorial_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 387.34 kB
Formato Adobe PDF
387.34 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact