This issue 3 of volume 15 (2021) of the journal Advances in Data Analysis and Classification (ADAC) contains 9 articles that deal with adaptive sparse group LASSO, text analysis, ensemble in density-based clustering, LASSO for model segmentation, Riemannian geometric manifold, polytomous logistic regression, functional data clustering, bivariate latent growth model, Sparse principal component regression

Editorial for ADAC issue 3 of volume 15 (2021) / Vichi, Maurizio; Cerioli, Andrea; Kestler, Hans; Okada, Akinori; Weihs, Claus. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5347. - 15:3(2021), pp. 543-546. [10.1007/s11634-021-00459-2]

Editorial for ADAC issue 3 of volume 15 (2021)

Vichi, Maurizio
;
2021

Abstract

This issue 3 of volume 15 (2021) of the journal Advances in Data Analysis and Classification (ADAC) contains 9 articles that deal with adaptive sparse group LASSO, text analysis, ensemble in density-based clustering, LASSO for model segmentation, Riemannian geometric manifold, polytomous logistic regression, functional data clustering, bivariate latent growth model, Sparse principal component regression
2021
classification; clustering; data analysis
01 Pubblicazione su rivista::01m Editorial/Introduzione in rivista
Editorial for ADAC issue 3 of volume 15 (2021) / Vichi, Maurizio; Cerioli, Andrea; Kestler, Hans; Okada, Akinori; Weihs, Claus. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5347. - 15:3(2021), pp. 543-546. [10.1007/s11634-021-00459-2]
File allegati a questo prodotto
File Dimensione Formato  
Vichi_editorial_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 366.59 kB
Formato Adobe PDF
366.59 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact