Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.
Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with {MeCP}2 non-sense mutations / Sbardella, Diego; Raffaella Tundo, Grazia; Cunsolo, GAETANO VINCENZO; Grasso, Giuseppe; Cascella, Raffaella; Caputo, Valerio; Maria Santoro, Anna; Milardi, Danilo; Pecorelli, Alessandra; Ciaccio, Chiara; Di Pierro, Donato; Leoncini, Silvia; Campagnolo, Luisa; Pironi, Virginia; Oddone, Francesco; Manni, Priscilla; Foti, Salvatore; Giardina, Emiliano; De Felice, Claudio; Hayek, Joussef; Curatolo, Paolo; Galasso, Cinzia; Valacchi, Giuseppe; Coletta, Massimiliano; Graziani, Grazia; Marini, Stefano. - In: BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR BASIS OF DISEASE. - ISSN 0925-4439. - 1866:7(2020). [10.1016/j.bbadis.2020.165793]
Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with {MeCP}2 non-sense mutations
Vincenzo Cunsolo;Luisa Campagnolo;Priscilla Manni;Paolo Curatolo;Massimiliano Coletta;
2020
Abstract
Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.File | Dimensione | Formato | |
---|---|---|---|
Sbardella_Defective proteasome_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.