Continual Learning (CL) is a novel paradigm in which the trained model is computed via a stream of data where tasks and data are only available over-time. Indeed, such approaches are able to learn new skills and knowledge without forgetting the previous ones: no access to previously encountered data and mitigate catastrophic forgetting. In this work, we propose a comparison of different CL algorithms in performing the classification of medical images. In particular, we aim to highlight the potential and ability of current methods in preventing catastrophic forgetting of the previous tasks when a new one is learned. CL-based methods have been tested for the classification of medical images showing the viability and effectiveness of these approaches.

Continual Learning for medical image classification / Quarta, Alessandro; Bruno, Pierangela; Calimeri, Francesco. - (2022). ( 1st AIxIA Workshop on Artificial Intelligence For Healthcare Udine, Italy ).

Continual Learning for medical image classification

Quarta Alessandro;
2022

Abstract

Continual Learning (CL) is a novel paradigm in which the trained model is computed via a stream of data where tasks and data are only available over-time. Indeed, such approaches are able to learn new skills and knowledge without forgetting the previous ones: no access to previously encountered data and mitigate catastrophic forgetting. In this work, we propose a comparison of different CL algorithms in performing the classification of medical images. In particular, we aim to highlight the potential and ability of current methods in preventing catastrophic forgetting of the previous tasks when a new one is learned. CL-based methods have been tested for the classification of medical images showing the viability and effectiveness of these approaches.
2022
1st AIxIA Workshop on Artificial Intelligence For Healthcare
Continual Learning; Deep Learning; Incremental Learning; Lifelong Learning; Medical Imaging; Online Learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Continual Learning for medical image classification / Quarta, Alessandro; Bruno, Pierangela; Calimeri, Francesco. - (2022). ( 1st AIxIA Workshop on Artificial Intelligence For Healthcare Udine, Italy ).
File allegati a questo prodotto
File Dimensione Formato  
Quarta_Continual-Learning_2022.pdf

accesso aperto

Note: https://ceur-ws.org/Vol-3307/paper7.pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1669324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact