Colon cancer is one of the most common cancers in the world, and the therapeutic workflow is dependent on the TNM staging system and the presence of clinical risk factors. However, in the case of patients with non-metastatic disease, evaluating the benefit of adjuvant chemotherapy is a clinical challenge. Radiomics could be seen as a non-invasive novel imaging biomarker able to outline tumor phenotype and to predict patient prognosis by analyzing preoperative medical images. Radiomics might provide decisional support for oncologists with the goal to reduce the number of arbitrary decisions in the emerging era of personalized medicine. To date, much evidence highlights the strengths of radiomics in cancer workup, but several aspects limit the use of radiomics methods as routine. The study aimed to develop a radiomic model able to identify high-risk colon cancer by analyzing pre-operative CT scans. The study population comprised 148 patients: 108 with non-metastatic colon cancer were retrospectively enrolled from January 2015 to June 2020, and 40 patients were used as the external validation cohort. The population was divided into two groups—High-risk and No-risk—following the presence of at least one high-risk clinical factor. All patients had baseline CT scans, and 3D cancer segmentation was performed on the portal phase by two expert radiologists using open-source software (3DSlicer v4.10.2). Among the 107 radiomic features extracted, stable features were selected to evaluate the inter-class correlation (ICC) (cut-off ICC > 0.8). Stable features were compared between the two groups (T-test or Mann–Whitney), and the significant features were selected for univariate and multivariate logistic regression to build a predictive radiomic model. The radiomic model was then validated with an external cohort. In total, 58/108 were classified as High-risk and 50/108 as No-risk. A total of 35 radiomic features were stable (0.81 ≤ ICC < 0.92). Among these, 28 features were significantly different between the two groups (p < 0.05), and only 9 features were selected to build the radiomic model. The radiomic model yielded an AUC of 0.73 in the internal cohort and 0.75 in the external cohort. In conclusion, the radiomic model could be seen as a performant, non-invasive imaging tool to properly stratify colon cancers with high-risk disease
Identification of cancer hallmarks in patients with non-metastatic colon cancer after surgical resection / Tarallo, Mariarita. - (2023 Jan 23).
Identification of cancer hallmarks in patients with non-metastatic colon cancer after surgical resection
TARALLO, MARIARITA
23/01/2023
Abstract
Colon cancer is one of the most common cancers in the world, and the therapeutic workflow is dependent on the TNM staging system and the presence of clinical risk factors. However, in the case of patients with non-metastatic disease, evaluating the benefit of adjuvant chemotherapy is a clinical challenge. Radiomics could be seen as a non-invasive novel imaging biomarker able to outline tumor phenotype and to predict patient prognosis by analyzing preoperative medical images. Radiomics might provide decisional support for oncologists with the goal to reduce the number of arbitrary decisions in the emerging era of personalized medicine. To date, much evidence highlights the strengths of radiomics in cancer workup, but several aspects limit the use of radiomics methods as routine. The study aimed to develop a radiomic model able to identify high-risk colon cancer by analyzing pre-operative CT scans. The study population comprised 148 patients: 108 with non-metastatic colon cancer were retrospectively enrolled from January 2015 to June 2020, and 40 patients were used as the external validation cohort. The population was divided into two groups—High-risk and No-risk—following the presence of at least one high-risk clinical factor. All patients had baseline CT scans, and 3D cancer segmentation was performed on the portal phase by two expert radiologists using open-source software (3DSlicer v4.10.2). Among the 107 radiomic features extracted, stable features were selected to evaluate the inter-class correlation (ICC) (cut-off ICC > 0.8). Stable features were compared between the two groups (T-test or Mann–Whitney), and the significant features were selected for univariate and multivariate logistic regression to build a predictive radiomic model. The radiomic model was then validated with an external cohort. In total, 58/108 were classified as High-risk and 50/108 as No-risk. A total of 35 radiomic features were stable (0.81 ≤ ICC < 0.92). Among these, 28 features were significantly different between the two groups (p < 0.05), and only 9 features were selected to build the radiomic model. The radiomic model yielded an AUC of 0.73 in the internal cohort and 0.75 in the external cohort. In conclusion, the radiomic model could be seen as a performant, non-invasive imaging tool to properly stratify colon cancers with high-risk diseaseFile | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Tarallo.pdf
accesso aperto
Note: tesi dottorato
Tipologia:
Tesi di dottorato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.02 MB
Formato
Adobe PDF
|
4.02 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.