Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and γ-rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.

Disentangling the sources of ionizing radiation in superconducting qubits / Cardani, L.; Colantoni, I.; Cruciani, A.; De Dominicis, F.; D'Imperio, G.; Laubenstein, M.; Mariani, A.; Pagnanini, L.; Pirro, S.; Tomei, C.; Casali, N.; Ferroni, F.; Frolov, D.; Gironi, L.; Grassellino, A.; Junker, M.; Kopas, C.; Lachman, E.; Mcrae, C. R. H.; Mutus, J.; Nastasi, M.; Pappas, D. P.; Pilipenko, R.; Sisti, M.; Pettinacci, V.; Romanenko, A.; Van Zanten, D.; Vignati, M.; Withrow, J. D.; Zhelev, N. Z.. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:1(2023). [10.1140/epjc/s10052-023-11199-2]

Disentangling the sources of ionizing radiation in superconducting qubits

Cardani L.
;
Colantoni I.;D'Imperio G.;Pagnanini L.;Casali N.;Pettinacci V.;Vignati M.;
2023

Abstract

Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and γ-rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.
2023
qubit, radioactivity, cryogenic device
01 Pubblicazione su rivista::01a Articolo in rivista
Disentangling the sources of ionizing radiation in superconducting qubits / Cardani, L.; Colantoni, I.; Cruciani, A.; De Dominicis, F.; D'Imperio, G.; Laubenstein, M.; Mariani, A.; Pagnanini, L.; Pirro, S.; Tomei, C.; Casali, N.; Ferroni, F.; Frolov, D.; Gironi, L.; Grassellino, A.; Junker, M.; Kopas, C.; Lachman, E.; Mcrae, C. R. H.; Mutus, J.; Nastasi, M.; Pappas, D. P.; Pilipenko, R.; Sisti, M.; Pettinacci, V.; Romanenko, A.; Van Zanten, D.; Vignati, M.; Withrow, J. D.; Zhelev, N. Z.. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:1(2023). [10.1140/epjc/s10052-023-11199-2]
File allegati a questo prodotto
File Dimensione Formato  
Cardani_Disentangling_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1668471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact