Using Sentinel-1 satellite data, differential interferometric synthetic-aperture-radar (DInSAR) retrieval techniques at C band are presented to estimate snowpack depth, combined with SAR backscattered data for wet snow discrimination and a physically based snowpack model. Optical satellite data from satellite multispectral imagers are used for snow extent mapping. The processing chain is tested in central Apennines (Italy), using several validation sites where in-situ snow measurements are daily available during the winter 2018-19. The potential of using analytical and statistical inversion algorithms, trained by forward SAR and snowpack model simulations of the same area, is discussed. Results, in terms of error bias, standard deviation and correlation between estimated and in situ snow data, are illustrated pointing out critical issues due to coherence loss.

Snow-Mantle Remote Sensing from Spaceborne Sar Interferometry Using a Model-Based Synergetic Retrieval Approach in Central Apennines / Palermo, G.; Raparelli, E.; Romero, N. A.; Manzi, M. P.; Papa, M.; Biscarini, M.; Tuccclla, P.; Lombardi, A.; Colaiuda, V.; Tomassetti, B.; Cimini, D.; Pettinelli, E.; Mattei, E.; Lauro, S.; Cosciotti, B.; Picciotti, E.; Di Fabio, S.; Bernardini, L.; Cinque, G.; Cappelletti, D. M.; Petroselli, C.; Pecci, M.; D'Aquila, P.; Martinelli, M.; Caira, T.; Di Fiore, T.; Boccabella, P.; Marzano, F. S.. - 2022-:(2022), pp. 4514-4517. (Intervento presentato al convegno 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 tenutosi a Kuala Lumpur, Malaysia) [10.1109/IGARSS46834.2022.9884911].

Snow-Mantle Remote Sensing from Spaceborne Sar Interferometry Using a Model-Based Synergetic Retrieval Approach in Central Apennines

Palermo G.
Primo
;
Raparelli E.;Manzi M. P.;Biscarini M.;Pecci M.;Marzano F. S.
2022

Abstract

Using Sentinel-1 satellite data, differential interferometric synthetic-aperture-radar (DInSAR) retrieval techniques at C band are presented to estimate snowpack depth, combined with SAR backscattered data for wet snow discrimination and a physically based snowpack model. Optical satellite data from satellite multispectral imagers are used for snow extent mapping. The processing chain is tested in central Apennines (Italy), using several validation sites where in-situ snow measurements are daily available during the winter 2018-19. The potential of using analytical and statistical inversion algorithms, trained by forward SAR and snowpack model simulations of the same area, is discussed. Results, in terms of error bias, standard deviation and correlation between estimated and in situ snow data, are illustrated pointing out critical issues due to coherence loss.
2022
2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
electromagnetic modeling; satellite synthetic aperture radar; snow modeling; snowpack retrieval
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Snow-Mantle Remote Sensing from Spaceborne Sar Interferometry Using a Model-Based Synergetic Retrieval Approach in Central Apennines / Palermo, G.; Raparelli, E.; Romero, N. A.; Manzi, M. P.; Papa, M.; Biscarini, M.; Tuccclla, P.; Lombardi, A.; Colaiuda, V.; Tomassetti, B.; Cimini, D.; Pettinelli, E.; Mattei, E.; Lauro, S.; Cosciotti, B.; Picciotti, E.; Di Fabio, S.; Bernardini, L.; Cinque, G.; Cappelletti, D. M.; Petroselli, C.; Pecci, M.; D'Aquila, P.; Martinelli, M.; Caira, T.; Di Fiore, T.; Boccabella, P.; Marzano, F. S.. - 2022-:(2022), pp. 4514-4517. (Intervento presentato al convegno 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 tenutosi a Kuala Lumpur, Malaysia) [10.1109/IGARSS46834.2022.9884911].
File allegati a questo prodotto
File Dimensione Formato  
Palermo_Snow-Mantle_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 685.46 kB
Formato Adobe PDF
685.46 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1668322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact