We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form $V(\mathbf{x}) = ||\mathbf{x}||^p_Q = (\mathbf{x}^\top Q \mathbf{x})^{\frac{p}{2}}$, where the parameters are the positive definite matrix $Q$ and the number $p > 0$. We give several examples of our proposed method and show how it improves previous results.
Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming / Hafstein, S.; Gudmundsson, S.; Giesl, P.; Scalas, E.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B.. - ISSN 1531-3492. - 23:2(2018), pp. 939-956. [10.3934/dcdsb.2018049]
Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming
Scalas E.
2018
Abstract
We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form $V(\mathbf{x}) = ||\mathbf{x}||^p_Q = (\mathbf{x}^\top Q \mathbf{x})^{\frac{p}{2}}$, where the parameters are the positive definite matrix $Q$ and the number $p > 0$. We give several examples of our proposed method and show how it improves previous results.File | Dimensione | Formato | |
---|---|---|---|
hafstein_Lyapunov-function_2019.pdf.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
666.14 kB
Formato
Adobe PDF
|
666.14 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.