The paper extends the Mixture of Latent Trait Analyzers (MLTA) for clus tering bipartite networks to account for nodal attributes. Bipartite networks are par ticularly useful to represent relations between disjoint sets of nodes, called sending and receiving nodes. The MLTA model is able not only to cluster the sending nodes of a bipartite network, but also capture the latent variability of network connections within each group. We extend this approach by including nodal attributes to study how nodes’ characteristics affect the group membership probability. A simulation study is conducted to evaluate the proposed approach.

Extending finite mixtures of latent trait analyzers for bipartite networks / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2022), pp. 540-550. (Intervento presentato al convegno 51th Scientific Meeting of the Italian Statistical Society tenutosi a Caserta (Italy)).

Extending finite mixtures of latent trait analyzers for bipartite networks

Maria Francesca Marino;Francesca Martella
2022

Abstract

The paper extends the Mixture of Latent Trait Analyzers (MLTA) for clus tering bipartite networks to account for nodal attributes. Bipartite networks are par ticularly useful to represent relations between disjoint sets of nodes, called sending and receiving nodes. The MLTA model is able not only to cluster the sending nodes of a bipartite network, but also capture the latent variability of network connections within each group. We extend this approach by including nodal attributes to study how nodes’ characteristics affect the group membership probability. A simulation study is conducted to evaluate the proposed approach.
2022
51th Scientific Meeting of the Italian Statistical Society
model-based clustering; network data; nodal attributes; EM algorithm; variational inference
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Extending finite mixtures of latent trait analyzers for bipartite networks / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2022), pp. 540-550. (Intervento presentato al convegno 51th Scientific Meeting of the Italian Statistical Society tenutosi a Caserta (Italy)).
File allegati a questo prodotto
File Dimensione Formato  
Failli_extended-finite-mixtures_2022.pdf

solo gestori archivio

Note: copertina, frontespizio, indice
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.42 MB
Formato Adobe PDF
6.42 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1667908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact