Consider a Markov chain with finite state space and suppose you wish to change time replacing the integer step index $n$ with a random counting process $N(t)$. What happens to the mixing time of the Markov chain? We present a partial reply in a particular case of interest in which $N(t)$ is a counting renewal process with power-law distributed inter-arrival times of index $\beta$. We then focus on $\beta \in (0,1)$ , leading to infinite expectation for inter-arrival times and further study the situation in which inter-arrival times follow the Mittag-Leffler distribution of order $\beta$.

Bounds for mixing times for finite semi-Markov processes with heavy-tail jump distribution / Georgiou, N.; Scalas, E.. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1314-2224. - 25:1(2022), pp. 229-243. [10.1007/s13540-021-00010-2]

Bounds for mixing times for finite semi-Markov processes with heavy-tail jump distribution

Scalas E.
2022

Abstract

Consider a Markov chain with finite state space and suppose you wish to change time replacing the integer step index $n$ with a random counting process $N(t)$. What happens to the mixing time of the Markov chain? We present a partial reply in a particular case of interest in which $N(t)$ is a counting renewal process with power-law distributed inter-arrival times of index $\beta$. We then focus on $\beta \in (0,1)$ , leading to infinite expectation for inter-arrival times and further study the situation in which inter-arrival times follow the Mittag-Leffler distribution of order $\beta$.
2022
discrete Markov Chains; mixing times; semi-Markov processes; fractional Poisson process
01 Pubblicazione su rivista::01a Articolo in rivista
Bounds for mixing times for finite semi-Markov processes with heavy-tail jump distribution / Georgiou, N.; Scalas, E.. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1314-2224. - 25:1(2022), pp. 229-243. [10.1007/s13540-021-00010-2]
File allegati a questo prodotto
File Dimensione Formato  
Georgiou_Bounds-for-mixing_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 428.48 kB
Formato Adobe PDF
428.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1667868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact