The expression Industry4.0 identifies a new industrial paradigm that includes the development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital Twins aims to build a dynamic environment in which, with the help of vertical, horizontal and end-to-end integration among industrial processes, smart technologies can communicate and exchange data to analyze and solve production problems, increase productivity and provide cost, time and energy savings. Specifically in the energy systems field, the introduction of AI technologies can lead to significant improvements in both machine design and optimization and maintenance procedures. Over the past decade, data from engineering processes have grown in scale. In fact, the use of more technologically sophisticated sensors and the increase in available computing power have enabled both experimental measurements and highresolution numerical simulations, making available an enormous amount of data on the performance of energy systems. Therefore, to build a Digital Twin model capable of exploring these unorganized data pools collected from massive and heterogeneous resources, new Artificial Intelligence and Machine Learning strategies need to be developed. In light of the exponential growth in the use of smart technologies in manufacturing processes, this thesis aims at enhancing traditional approaches to the design, analysis, and optimization phases of turbomachinery and energy systems, which today are still predominantly based on empirical procedures or computationally intensive CFD-based optimizations. This improvement is made possible by the implementation of Digital Twins models, which, being based primarily on the use of Machine Learning that exploits performance Big-Data collected from energy systems, are acknowledged as crucial technologies to remain competitive in the dynamic energy production landscape. The introduction of Digital Twin models changes the overall structure of design and maintenance approaches and results in modern support tools that facilitate real-time informed decision making. In addition, the introduction of supervised learning algorithms facilitates the exploration of the design space by providing easy-to-run analytical models, which can also be used as cost functions in multi-objective optimization problems, avoiding the need for time-consuming numerical simulations or experimental campaings. Unsupervised learning methods can be applied, for example, to extract new insights from turbomachinery performance data and improve designers’ understanding of blade-flow interaction. Alternatively, Artificial Intelligence frameworks can be developed for Condition-Based Maintenance, allowing the transition from preventive to predictive maintenance. This thesis can be conceptually divided into two parts. The first reviews the state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial role of Artificial Intelligence in supporting informed decision making during the design, optimization, and maintenance phases of energy systems. The second part covers the development of Machine Learning strategies to improve the classical approach to turbomachinery design and maintenance strategies for energy systems by exploiting data from numerical simulations, experimental campaigns, and sensor datasets (SCADA). The different Machine Learning approaches adopted include clustering algorithms, regression algorithms and dimensionality reduction techniques: Autoencoder and Principal Component Analysis. A first work shows the potential of unsupervised learning approaches (clustering algorithms) in exploring a Design of Experiment of 76 numerical simulations for turbomachinery design purposes. The second work takes advantage of a nonsequential experimental dataset, measured on a rotating turbine rig characterized by 48 blades divided into 7 sectors that share the same baseline rotor geometry but have different tip designs, to infer and dissect the causal relationship among different tip geometries and unsteady aero-thermodynamic performance via a novel Machine-Learning procedure based on dimensionality reduction techniques. The last application proposes a new anomaly detection framework for gensets in DH networks, based on SCADA data that exploits and compares the performance of regression algorithms such as XGBoost and Multi-layer Perceptron.
Artificial intelligence for digital twins in energy systems and turbomachinery: development of machine learning frameworks for design, optimization and maintenance / Tucci, FRANCESCO ALDO. - (2023 Jan 25).
Artificial intelligence for digital twins in energy systems and turbomachinery: development of machine learning frameworks for design, optimization and maintenance
TUCCI, FRANCESCO ALDO
25/01/2023
Abstract
The expression Industry4.0 identifies a new industrial paradigm that includes the development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital Twins aims to build a dynamic environment in which, with the help of vertical, horizontal and end-to-end integration among industrial processes, smart technologies can communicate and exchange data to analyze and solve production problems, increase productivity and provide cost, time and energy savings. Specifically in the energy systems field, the introduction of AI technologies can lead to significant improvements in both machine design and optimization and maintenance procedures. Over the past decade, data from engineering processes have grown in scale. In fact, the use of more technologically sophisticated sensors and the increase in available computing power have enabled both experimental measurements and highresolution numerical simulations, making available an enormous amount of data on the performance of energy systems. Therefore, to build a Digital Twin model capable of exploring these unorganized data pools collected from massive and heterogeneous resources, new Artificial Intelligence and Machine Learning strategies need to be developed. In light of the exponential growth in the use of smart technologies in manufacturing processes, this thesis aims at enhancing traditional approaches to the design, analysis, and optimization phases of turbomachinery and energy systems, which today are still predominantly based on empirical procedures or computationally intensive CFD-based optimizations. This improvement is made possible by the implementation of Digital Twins models, which, being based primarily on the use of Machine Learning that exploits performance Big-Data collected from energy systems, are acknowledged as crucial technologies to remain competitive in the dynamic energy production landscape. The introduction of Digital Twin models changes the overall structure of design and maintenance approaches and results in modern support tools that facilitate real-time informed decision making. In addition, the introduction of supervised learning algorithms facilitates the exploration of the design space by providing easy-to-run analytical models, which can also be used as cost functions in multi-objective optimization problems, avoiding the need for time-consuming numerical simulations or experimental campaings. Unsupervised learning methods can be applied, for example, to extract new insights from turbomachinery performance data and improve designers’ understanding of blade-flow interaction. Alternatively, Artificial Intelligence frameworks can be developed for Condition-Based Maintenance, allowing the transition from preventive to predictive maintenance. This thesis can be conceptually divided into two parts. The first reviews the state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial role of Artificial Intelligence in supporting informed decision making during the design, optimization, and maintenance phases of energy systems. The second part covers the development of Machine Learning strategies to improve the classical approach to turbomachinery design and maintenance strategies for energy systems by exploiting data from numerical simulations, experimental campaigns, and sensor datasets (SCADA). The different Machine Learning approaches adopted include clustering algorithms, regression algorithms and dimensionality reduction techniques: Autoencoder and Principal Component Analysis. A first work shows the potential of unsupervised learning approaches (clustering algorithms) in exploring a Design of Experiment of 76 numerical simulations for turbomachinery design purposes. The second work takes advantage of a nonsequential experimental dataset, measured on a rotating turbine rig characterized by 48 blades divided into 7 sectors that share the same baseline rotor geometry but have different tip designs, to infer and dissect the causal relationship among different tip geometries and unsteady aero-thermodynamic performance via a novel Machine-Learning procedure based on dimensionality reduction techniques. The last application proposes a new anomaly detection framework for gensets in DH networks, based on SCADA data that exploits and compares the performance of regression algorithms such as XGBoost and Multi-layer Perceptron.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Tucci.pdf
accesso aperto
Note: Tesi completa
Tipologia:
Tesi di dottorato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
26.01 MB
Formato
Adobe PDF
|
26.01 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.