Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106: 1454-1466, 2011. First published June 22, 2011; doi: 10.1152/jn.00995.2010.-Canceling a pending movement is a hallmark of voluntary behavioral control because it allows us to quickly adapt to unattended changes either in the external environment or in our thoughts. The countermanding paradigm allows the study of inhibitory processes of motor acts by requiring the subject to withhold planned movements in response to an infrequent stop-signal. At present the neural processes underlying the inhibitory control of arm movements are mostly unknown. We recorded the activity of single units in the rostral and caudal portion of the dorsal premotor cortex (PMd) of monkeys trained in a countermanding reaching task. We found that among neurons with a movement-preparatory activity, about one-third exhibit a modulation before the behavioral estimate of the time it takes to cancel a planned movement. Hence these neurons exhibit a pattern of activity suggesting that PMd plays a critical role in the brain networks involved in the control of arm movement initiation and suppression.

Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106: 1454-1466, 2011. First published June 22, 2011; doi: 10.1152/jn.00995.2010.-Canceling a pending movement is a hallmark of voluntary behavioral control because it allows us to quickly adapt to unattended changes either in the external environment or in our thoughts. The countermanding paradigm allows the study of inhibitory processes of motor acts by requiring the subject to withhold planned movements in response to an infrequent stop-signal. At present the neural processes underlying the inhibitory control of arm movements are mostly unknown. We recorded the activity of single units in the rostral and caudal portion of the dorsal premotor cortex (PMd) of monkeys trained in a countermanding reaching task. We found that among neurons with a movement-preparatory activity, about one-third exhibit a modulation before the behavioral estimate of the time it takes to cancel a planned movement. Hence these neurons exhibit a pattern of activity suggesting that PMd plays a critical role in the brain networks involved in the control of arm movement initiation and suppression.

Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys / Mirabella, G.; Pani, P.; Ferraina, S.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - STAMPA. - 106:3(2011), pp. 1454-1466. [10.1152/jn.00995.2010]

Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys

Mirabella G.;Pani P.;Ferraina S.
2011

Abstract

Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106: 1454-1466, 2011. First published June 22, 2011; doi: 10.1152/jn.00995.2010.-Canceling a pending movement is a hallmark of voluntary behavioral control because it allows us to quickly adapt to unattended changes either in the external environment or in our thoughts. The countermanding paradigm allows the study of inhibitory processes of motor acts by requiring the subject to withhold planned movements in response to an infrequent stop-signal. At present the neural processes underlying the inhibitory control of arm movements are mostly unknown. We recorded the activity of single units in the rostral and caudal portion of the dorsal premotor cortex (PMd) of monkeys trained in a countermanding reaching task. We found that among neurons with a movement-preparatory activity, about one-third exhibit a modulation before the behavioral estimate of the time it takes to cancel a planned movement. Hence these neurons exhibit a pattern of activity suggesting that PMd plays a critical role in the brain networks involved in the control of arm movement initiation and suppression.
2011
Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106: 1454-1466, 2011. First published June 22, 2011; doi: 10.1152/jn.00995.2010.-Canceling a pending movement is a hallmark of voluntary behavioral control because it allows us to quickly adapt to unattended changes either in the external environment or in our thoughts. The countermanding paradigm allows the study of inhibitory processes of motor acts by requiring the subject to withhold planned movements in response to an infrequent stop-signal. At present the neural processes underlying the inhibitory control of arm movements are mostly unknown. We recorded the activity of single units in the rostral and caudal portion of the dorsal premotor cortex (PMd) of monkeys trained in a countermanding reaching task. We found that among neurons with a movement-preparatory activity, about one-third exhibit a modulation before the behavioral estimate of the time it takes to cancel a planned movement. Hence these neurons exhibit a pattern of activity suggesting that PMd plays a critical role in the brain networks involved in the control of arm movement initiation and suppression.
countermanding task; voluntary control; stop task; single units
01 Pubblicazione su rivista::01a Articolo in rivista
Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys / Mirabella, G.; Pani, P.; Ferraina, S.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - STAMPA. - 106:3(2011), pp. 1454-1466. [10.1152/jn.00995.2010]
File allegati a questo prodotto
File Dimensione Formato  
Mirabella_Neural_2011.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Contatta l'autore
Mirabella_Post-print_Neural_2011.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1667074
Citazioni
  • ???jsp.display-item.citation.pmc??? 71
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 98
social impact