Model-based and fuzzy clustering methods represent widely used approaches for soft clustering. In the former approach, it is assumed that the data are generated by a mixture of probability distributions where each component represents a different group or cluster. Each observation unit is ex-post assigned to a cluster using the so-called posterior probability of component membership. In the latter case, no probabilistic assumptions are made and each observation unit belongs to a cluster according to the so-called fuzzy membership degree. The aim of this work is to compare the performance of both approaches by means of a simulation study.

A Comparison of Model-Based and Fuzzy Clustering Methods / Alfo, Marco; Ferraro, MARIA BRIGIDA; Giordani, Paolo; Scrucca, Luca; Serafini, Alessio. - (2018), pp. 208-215. (Intervento presentato al convegno SIS 2018 tenutosi a Palermo).

A Comparison of Model-Based and Fuzzy Clustering Methods

Marco Alfo;Maria Brigida Ferraro;Paolo Giordani
;
Alessio Serafini
2018

Abstract

Model-based and fuzzy clustering methods represent widely used approaches for soft clustering. In the former approach, it is assumed that the data are generated by a mixture of probability distributions where each component represents a different group or cluster. Each observation unit is ex-post assigned to a cluster using the so-called posterior probability of component membership. In the latter case, no probabilistic assumptions are made and each observation unit belongs to a cluster according to the so-called fuzzy membership degree. The aim of this work is to compare the performance of both approaches by means of a simulation study.
2018
SIS 2018
cluster analysis; model-based approach; fuzzy approach
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Comparison of Model-Based and Fuzzy Clustering Methods / Alfo, Marco; Ferraro, MARIA BRIGIDA; Giordani, Paolo; Scrucca, Luca; Serafini, Alessio. - (2018), pp. 208-215. (Intervento presentato al convegno SIS 2018 tenutosi a Palermo).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1666900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact