Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. © 2014 Macmillan Publishers Limited All rights reserved.

MiR-216a: A link between endothelial dysfunction and autophagy / Menghini, R.; Casagrande, V.; Marino, A.; Marchetti, V.; Cardellini, M.; Stoehr, R.; Rizza, S.; Martelli, E.; Greco, S.; Mauriello, A.; Ippoliti, A.; Martelli, F.; Lauro, R.; Federici, M.. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 5:1(2014). [10.1038/cddis.2013.556]

MiR-216a: A link between endothelial dysfunction and autophagy

Menghini R.;Casagrande V.;Marino A.;Marchetti V.;Cardellini M.;Martelli E.;
2014

Abstract

Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. © 2014 Macmillan Publishers Limited All rights reserved.
2014
Atherosclerosis; Autophagy; Endothelial dysfunction; microRNAs
01 Pubblicazione su rivista::01m Editorial/Introduzione in rivista
MiR-216a: A link between endothelial dysfunction and autophagy / Menghini, R.; Casagrande, V.; Marino, A.; Marchetti, V.; Cardellini, M.; Stoehr, R.; Rizza, S.; Martelli, E.; Greco, S.; Mauriello, A.; Ippoliti, A.; Martelli, F.; Lauro, R.; Federici, M.. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 5:1(2014). [10.1038/cddis.2013.556]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1666322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 119
social impact