The possibility to computationally prioritize candidate disease genes capitalizing on existing information has led to a speedup in the discovery of new methods. Many gene discovery techniques exploit network data, like protein-protein interactions (PPIs), in order to extract knowledge from the network structure relying on several network metrics. We here present PROCONSUL, a method that builds on top of the concept of connectivity significance (CS) and exploits the idea of probabilistic exploration of the space of putative disease genes. We show that our methodology is able to outperform the state-of-the-art tool based on CS in several settings, and propose different, effective gene discovery strategies according to specific disease network properties.

PROCONSUL: PRObabilistic exploration of CONnectivity Significance patterns for disease modULe discovery / Luca, Riccardo De; Carfora, Marco; Blanco, Gonzalo; Mastropietro, Andrea; Petti, Manuela; Tieri, Paolo. - (2022), pp. 1941-1947. (Intervento presentato al convegno 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) tenutosi a Las Vegas, NV, USA) [10.1109/BIBM55620.2022.9995586].

PROCONSUL: PRObabilistic exploration of CONnectivity Significance patterns for disease modULe discovery

Mastropietro, Andrea;Petti, Manuela;
2022

Abstract

The possibility to computationally prioritize candidate disease genes capitalizing on existing information has led to a speedup in the discovery of new methods. Many gene discovery techniques exploit network data, like protein-protein interactions (PPIs), in order to extract knowledge from the network structure relying on several network metrics. We here present PROCONSUL, a method that builds on top of the concept of connectivity significance (CS) and exploits the idea of probabilistic exploration of the space of putative disease genes. We show that our methodology is able to outperform the state-of-the-art tool based on CS in several settings, and propose different, effective gene discovery strategies according to specific disease network properties.
2022
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
bioinformatics; disease gene discovery; gene disease association; interactome; network analysis; network medicine
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
PROCONSUL: PRObabilistic exploration of CONnectivity Significance patterns for disease modULe discovery / Luca, Riccardo De; Carfora, Marco; Blanco, Gonzalo; Mastropietro, Andrea; Petti, Manuela; Tieri, Paolo. - (2022), pp. 1941-1947. (Intervento presentato al convegno 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) tenutosi a Las Vegas, NV, USA) [10.1109/BIBM55620.2022.9995586].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1665431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact