Given a set of terminal pairs on the external face of an undirected unweighted planar graph, we give a linear-time algorithm for computing the union of non-crossing shortest paths joining each terminal pair, if such paths exist. This allows us to compute distances between each terminal pair, within the same time bound. We also give a novel concept of incremental shortest path subgraph of a planar graph, i.e., a partition of the planar embedding in subregions that preserve distances, that can be of interest itself.
Non-crossing shortest paths in undirected unweighted planar graphs in linear time / Balzotti, Lorenzo; Franciosa, Paolo G.. - In: JOURNAL OF GRAPH ALGORITHMS AND APPLICATIONS. - ISSN 1526-1719. - 26:4(2022), pp. 589-606. [10.7155/jgaa.00610]
Non-crossing shortest paths in undirected unweighted planar graphs in linear time
Balzotti, Lorenzo
Membro del Collaboration Group
;Franciosa, Paolo G.Membro del Collaboration Group
2022
Abstract
Given a set of terminal pairs on the external face of an undirected unweighted planar graph, we give a linear-time algorithm for computing the union of non-crossing shortest paths joining each terminal pair, if such paths exist. This allows us to compute distances between each terminal pair, within the same time bound. We also give a novel concept of incremental shortest path subgraph of a planar graph, i.e., a partition of the planar embedding in subregions that preserve distances, that can be of interest itself.File | Dimensione | Formato | |
---|---|---|---|
Balzotti_NonCrossing_2022.pdf
solo gestori archivio
Note: full article
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
619.84 kB
Formato
Adobe PDF
|
619.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.