We consider situations where a model for an ordered categorical response variable is deemed necessary. Standard models may not be suited to perform this analysis, being that the marginal probability effects to a large extent are predetermined by the rigid parametric structure. We propose to use a rank likelihood approach in a non Gaussian framework and show how additional flexibility can be gained by modeling individual heterogeneity in terms of latent structure. This approach avoids to set a specific link between the observed categories and the latent quantities and it is discussed in the broadly general case of longitudinal data. A real data example is illustrated in the context of sovereign credit ratings modeling and forecasting.

Generalized linear mixed model with Bayesian rank likelihood / Doroshenko, Lyubov; Liseo, Brunero. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2022). [10.1007/s10260-022-00657-y]

Generalized linear mixed model with Bayesian rank likelihood

Brunero Liseo
Secondo
Methodology
2022

Abstract

We consider situations where a model for an ordered categorical response variable is deemed necessary. Standard models may not be suited to perform this analysis, being that the marginal probability effects to a large extent are predetermined by the rigid parametric structure. We propose to use a rank likelihood approach in a non Gaussian framework and show how additional flexibility can be gained by modeling individual heterogeneity in terms of latent structure. This approach avoids to set a specific link between the observed categories and the latent quantities and it is discussed in the broadly general case of longitudinal data. A real data example is illustrated in the context of sovereign credit ratings modeling and forecasting.
2022
Ordinal data; Latent variables; Missing data; Gibbs sampler; Longitudinal data; Ratings
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized linear mixed model with Bayesian rank likelihood / Doroshenko, Lyubov; Liseo, Brunero. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2022). [10.1007/s10260-022-00657-y]
File allegati a questo prodotto
File Dimensione Formato  
Liseo_Generakized-linear_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1664894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact