In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework is proposed to suitably handle those problems. First, a scheme for bound constrained problems that combines a dense sequence of directions to handle the nonsmoothness of the objective function with primitive directions to handle discrete variables is described. Then, an exact penalty approach is embedded in the scheme to suitably manage nonlinear (possibly nonsmooth) constraints. Global convergence properties of the proposed algorithms toward stationary points are analyzed and results of an extensive numerical experience on a set of mixed-integer test problems are reported.

Derivative-free methods for mixed-integer nonsmooth constrained optimization / Giovannelli, Tommaso; Liuzzi, Giampaolo; Lucidi, Stefano; Rinaldi, Francesco. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - 82:2(2022), pp. 293-327. [10.1007/s10589-022-00363-1]

Derivative-free methods for mixed-integer nonsmooth constrained optimization

Giampaolo Liuzzi
Membro del Collaboration Group
;
Stefano Lucidi
Membro del Collaboration Group
;
2022

Abstract

In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework is proposed to suitably handle those problems. First, a scheme for bound constrained problems that combines a dense sequence of directions to handle the nonsmoothness of the objective function with primitive directions to handle discrete variables is described. Then, an exact penalty approach is embedded in the scheme to suitably manage nonlinear (possibly nonsmooth) constraints. Global convergence properties of the proposed algorithms toward stationary points are analyzed and results of an extensive numerical experience on a set of mixed-integer test problems are reported.
2022
Derivative-free optimization; Nonsmooth optimization; Mixed-integer nonlinear programming
01 Pubblicazione su rivista::01a Articolo in rivista
Derivative-free methods for mixed-integer nonsmooth constrained optimization / Giovannelli, Tommaso; Liuzzi, Giampaolo; Lucidi, Stefano; Rinaldi, Francesco. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - 82:2(2022), pp. 293-327. [10.1007/s10589-022-00363-1]
File allegati a questo prodotto
File Dimensione Formato  
Giovannelli_Derivative-free_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1664885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact