We study the time evolution of a viscous incompressible fluid with axial symmetry without swirl when the initial vorticity is very concentrated in N disjoint rings. We show that in a suitable joint limit, in which both the thickness of the rings and the viscosity tend to zero, the vorticity remains concentrated in N disjointed rings, each one of them performing a simple translation along the symmetry axis with constant speed.

Vanishing viscosity limit for concentrated vortex rings / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 63:12(2022). [10.1063/5.0124516]

Vanishing viscosity limit for concentrated vortex rings

Paolo Butta';Guido Cavallaro
;
Carlo Marchioro
2022

Abstract

We study the time evolution of a viscous incompressible fluid with axial symmetry without swirl when the initial vorticity is very concentrated in N disjoint rings. We show that in a suitable joint limit, in which both the thickness of the rings and the viscosity tend to zero, the vorticity remains concentrated in N disjointed rings, each one of them performing a simple translation along the symmetry axis with constant speed.
2022
Incompressible viscous flow; vortex rings
01 Pubblicazione su rivista::01a Articolo in rivista
Vanishing viscosity limit for concentrated vortex rings / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - 63:12(2022). [10.1063/5.0124516]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Vanishing_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.35 MB
Formato Adobe PDF
5.35 MB Adobe PDF   Contatta l'autore
Buttà_Vanishing_2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 378.72 kB
Formato Adobe PDF
378.72 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1663633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact