In Edge and Fog Computing environments, it is usual to design and test distributed algorithms that implement scheduling and load balancing solutions. The operation paradigm that usually fits the context requires the users to make calls to the closer node for executing a task, and since the service must be distributed among a set of nodes, the serverless paradigm with the FaaS (Function-as-a-Service) is the most promising strategy to use. In light of these preconditions, we designed and implemented a framework called P2PFaaS. The framework, built upon Docker containers, allows the implementation of fully decentralised scheduling or load balancing algorithms among a set of nodes. By relying on three basic services, such as the scheduling service, the discovery service, and the learner service, the framework allows the implementation of any kind of scheduling solution, even if based on Reinforcement Learning. Finally, the framework provides a ready-to-go solution that can be installed and has been tested both on x86 servers and ARM-based edge nodes (like, for example, the Raspberry Pi).
P2PFaaS: A framework for FaaS peer-to-peer scheduling and load balancing in Fog and Edge computing / Proietti Mattia, Gabriele; Beraldi, Roberto. - In: SOFTWAREX. - ISSN 2352-7110. - 21:(2023), pp. 1-7. [10.1016/j.softx.2022.101290]
P2PFaaS: A framework for FaaS peer-to-peer scheduling and load balancing in Fog and Edge computing
Proietti Mattia, Gabriele
;Beraldi, Roberto
2023
Abstract
In Edge and Fog Computing environments, it is usual to design and test distributed algorithms that implement scheduling and load balancing solutions. The operation paradigm that usually fits the context requires the users to make calls to the closer node for executing a task, and since the service must be distributed among a set of nodes, the serverless paradigm with the FaaS (Function-as-a-Service) is the most promising strategy to use. In light of these preconditions, we designed and implemented a framework called P2PFaaS. The framework, built upon Docker containers, allows the implementation of fully decentralised scheduling or load balancing algorithms among a set of nodes. By relying on three basic services, such as the scheduling service, the discovery service, and the learner service, the framework allows the implementation of any kind of scheduling solution, even if based on Reinforcement Learning. Finally, the framework provides a ready-to-go solution that can be installed and has been tested both on x86 servers and ARM-based edge nodes (like, for example, the Raspberry Pi).File | Dimensione | Formato | |
---|---|---|---|
ProiettiMattia_P2PFaaS_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
677.53 kB
Formato
Adobe PDF
|
677.53 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.