The world is facing a big problem of non-communicable diseases, such as obesity, cardiovascular disease and diabetes. An excessive sugar consumption is considered as a main factor, which triggers these diseases. The two main sources of sugar in processed products on the market are sugar-sweetened beverages and sweet bakery products. Sugar reduction is challenging, especially in baked goods, since it interacts significantly with all ingredients. These interactions cause an increase in gelatinization temperature, a delay in gluten network development, an increase or decrease in yeast activity depending on the sugar concentration, as well as an enhancement of emulsification. Reflecting the molecular interactions on the product quality characteristics of different types of baked goods, sugar also contributes to browning reactions and extension of microbial shelf life. During cake preparation, sugar supports the batter aeration which results in the typical soft cake crumb. Furthermore, it contributes to the spreading process of biscuits during baking and enhances surface cracking due to recrystallization. Sugar reduction requires the development of different strategies; Two well-known strategies are the replacement of added sugar by the combination of bulking agents and high-intensive sweeteners, or by sweet bulking ingredients, such as polyols. The in-situ production of polyols to enhance sweetness, and exopolysaccharides to improve texture, in a sourdough system shows high potential as sugar replacement. Lactobacillus sanfranciscensis, Leuconostoc mesenteroides and Leuconostoc citreum are high mannitol producing lactic acid bacteria (LAB) strains with yields of 70–98% and Leuconostoc oenos was found to produce erythritol. Furthermore, the yeast strain Candida milleri isolated from sourdough produces xylitol in the presence of xylose. Exopolysaccharides produced by LAB and/or yeasts are known to improve the texture and structure of bakery products and, thus, have high potential as natural functional ingredients to compensate quality loss in sweet bakery goods.

Sugar reduction in bakery products. Current strategies and sourdough technology as a potential novel approach / Sahina, Aylin W.; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K.. - In: FOOD RESEARCH INTERNATIONAL. - ISSN 0963-9969. - 126:(2019), pp. 1-17. [10.1016/j.foodres.2019.108583]

Sugar reduction in bakery products. Current strategies and sourdough technology as a potential novel approach

Emanuele Zannini
Funding Acquisition
;
2019

Abstract

The world is facing a big problem of non-communicable diseases, such as obesity, cardiovascular disease and diabetes. An excessive sugar consumption is considered as a main factor, which triggers these diseases. The two main sources of sugar in processed products on the market are sugar-sweetened beverages and sweet bakery products. Sugar reduction is challenging, especially in baked goods, since it interacts significantly with all ingredients. These interactions cause an increase in gelatinization temperature, a delay in gluten network development, an increase or decrease in yeast activity depending on the sugar concentration, as well as an enhancement of emulsification. Reflecting the molecular interactions on the product quality characteristics of different types of baked goods, sugar also contributes to browning reactions and extension of microbial shelf life. During cake preparation, sugar supports the batter aeration which results in the typical soft cake crumb. Furthermore, it contributes to the spreading process of biscuits during baking and enhances surface cracking due to recrystallization. Sugar reduction requires the development of different strategies; Two well-known strategies are the replacement of added sugar by the combination of bulking agents and high-intensive sweeteners, or by sweet bulking ingredients, such as polyols. The in-situ production of polyols to enhance sweetness, and exopolysaccharides to improve texture, in a sourdough system shows high potential as sugar replacement. Lactobacillus sanfranciscensis, Leuconostoc mesenteroides and Leuconostoc citreum are high mannitol producing lactic acid bacteria (LAB) strains with yields of 70–98% and Leuconostoc oenos was found to produce erythritol. Furthermore, the yeast strain Candida milleri isolated from sourdough produces xylitol in the presence of xylose. Exopolysaccharides produced by LAB and/or yeasts are known to improve the texture and structure of bakery products and, thus, have high potential as natural functional ingredients to compensate quality loss in sweet bakery goods.
2019
cakes; exopolysaccharides; health; polyols; sourdough; sugar
01 Pubblicazione su rivista::01a Articolo in rivista
Sugar reduction in bakery products. Current strategies and sourdough technology as a potential novel approach / Sahina, Aylin W.; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K.. - In: FOOD RESEARCH INTERNATIONAL. - ISSN 0963-9969. - 126:(2019), pp. 1-17. [10.1016/j.foodres.2019.108583]
File allegati a questo prodotto
File Dimensione Formato  
Sahin_Sugar-reduction_2019.pdf

solo gestori archivio

Note: Articolo rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1661891
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 69
social impact