The effects of hydrolysis by commercial food-grade proteases on the physicochemical and techno-functional properties of lentil protein concentrate were investigated. Lentil protein concentrate was hydrolysed with Alcalase, Novozym 11028 or Flavourzyme, and a control was prepared without enzyme addition under the same conditions. Differences in specificity between the three proteases were evident in the electrophoretic protein profile, reversed-phase HPLC peptide profile, and free amino acid composition. Alcalase and Novozym were capable of extensively degrading all the major protein fractions. Alcalase or Novozym treatment resulted in considerably higher solubility under acidic conditions compared to the control. Flavourzyme treatment resulted in moderately improved solubility in the acidic range, but slightly lower solubility at pH 7. Alcalase treatment resulted in slightly larger particle size and slightly higher viscosity. The foaming properties of the protein concentrate were not significantly affected by hydrolysis. Increased solubility in acidic conditions with hydrolysis could broaden the range of food and beverage applications for lentil protein concentrate.
Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties / Vogelsang-O'Dwyer, M.; Sahin, A. W.; Bot, F.; O'Mahony, J. A.; Bez, J.; Arendt, E. K.; Zannini, E.. - In: EUROPEAN FOOD RESEARCH AND TECHNOLOGY. - ISSN 1438-2385. - 249:3(2023), pp. 573-586. [10.1007/s00217-022-04152-2]
Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties
Zannini E.Ultimo
Funding Acquisition
2023
Abstract
The effects of hydrolysis by commercial food-grade proteases on the physicochemical and techno-functional properties of lentil protein concentrate were investigated. Lentil protein concentrate was hydrolysed with Alcalase, Novozym 11028 or Flavourzyme, and a control was prepared without enzyme addition under the same conditions. Differences in specificity between the three proteases were evident in the electrophoretic protein profile, reversed-phase HPLC peptide profile, and free amino acid composition. Alcalase and Novozym were capable of extensively degrading all the major protein fractions. Alcalase or Novozym treatment resulted in considerably higher solubility under acidic conditions compared to the control. Flavourzyme treatment resulted in moderately improved solubility in the acidic range, but slightly lower solubility at pH 7. Alcalase treatment resulted in slightly larger particle size and slightly higher viscosity. The foaming properties of the protein concentrate were not significantly affected by hydrolysis. Increased solubility in acidic conditions with hydrolysis could broaden the range of food and beverage applications for lentil protein concentrate.File | Dimensione | Formato | |
---|---|---|---|
VogelsangO’Dwyer_Enzymatic-hydrolysis_2022.pdf
accesso aperto
Note: Articolo rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.