Introduction: Prostate-specific membrane antigen (PSMA) has emerged as a highly relevant target for prostate cancer (PC) diagnosis and therapy. PSMA inhibitors targeting PSMA-enzymatic domain have been successfully labeled with radionuclides emitting positrons or gamma-photons, thus obtaining tracers suitable for imaging with positron emission computed tomography (PET/CT) or single-photon emission tomography (SPECT). Areas covered: The different approaches for obtaining PSMA-ligands labeled with gamma-emitting nuclides (99mTc or111In) are reviewed. Furthermore, the applications of 99mTc/111In-PSMA SPECT for the imaging of PC patients in different clinical settings (staging or biochemical recurrence) are covered. Lastly, the employment of PSMA-targeted SPECT tracers for radioguided surgery (RGS) during primary or salvage lymphadenectomy is discussed. Expert opinion: RGS provided satisfying preliminary results in both primary and salvage lymphadenectomy, allowing to discriminate between pathological and non-pathological nodes with high accuracy, although prospective studies with larger cohorts are needed to further validate this surgical approach. The potential of PSMA-targeted SPECT/CT has not been fully explored yet, but it might represent a relatively cost-effective alternative to PSMA PET/CT in limited resource environments. In this perspective, the implementation of novel SPECT technologies or algorithms, such as semiconductor-ionization detectors or resolution recovery reconstruction, will be topic of future investigation.
Prostate-specific membrane antigen-directed imaging and radioguided surgery with single-photon emission computed tomography: state of the art and future outlook / Filippi, L.; Palumbo, B.; Frantellizzi, V.; Nuvoli, S.; De Vincentis, G.; Spanu, A.; Schillaci, O.. - In: EXPERT REVIEW OF MEDICAL DEVICES. - ISSN 1743-4440. - (2022), pp. 1-10. [10.1080/17434440.2022.2146999]
Prostate-specific membrane antigen-directed imaging and radioguided surgery with single-photon emission computed tomography: state of the art and future outlook
Frantellizzi V.;De Vincentis G.;
2022
Abstract
Introduction: Prostate-specific membrane antigen (PSMA) has emerged as a highly relevant target for prostate cancer (PC) diagnosis and therapy. PSMA inhibitors targeting PSMA-enzymatic domain have been successfully labeled with radionuclides emitting positrons or gamma-photons, thus obtaining tracers suitable for imaging with positron emission computed tomography (PET/CT) or single-photon emission tomography (SPECT). Areas covered: The different approaches for obtaining PSMA-ligands labeled with gamma-emitting nuclides (99mTc or111In) are reviewed. Furthermore, the applications of 99mTc/111In-PSMA SPECT for the imaging of PC patients in different clinical settings (staging or biochemical recurrence) are covered. Lastly, the employment of PSMA-targeted SPECT tracers for radioguided surgery (RGS) during primary or salvage lymphadenectomy is discussed. Expert opinion: RGS provided satisfying preliminary results in both primary and salvage lymphadenectomy, allowing to discriminate between pathological and non-pathological nodes with high accuracy, although prospective studies with larger cohorts are needed to further validate this surgical approach. The potential of PSMA-targeted SPECT/CT has not been fully explored yet, but it might represent a relatively cost-effective alternative to PSMA PET/CT in limited resource environments. In this perspective, the implementation of novel SPECT technologies or algorithms, such as semiconductor-ionization detectors or resolution recovery reconstruction, will be topic of future investigation.File | Dimensione | Formato | |
---|---|---|---|
Filippi_Prostate-specific_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.