Here we present EdgeSHAPer, a workflow for explaining graph neural networks by approximating Shapley values using Monte Carlo sampling. In this protocol, we describe steps to execute Python scripts for a chemical dataset from the original publication; however, this approach is also applicable to any user-provided dataset. We also detail steps encompassing neural network training, an explanation phase, and analysis via feature mapping.

Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach / Mastropietro, Andrea; Pasculli, Giuseppe; Bajorath, Jürgen. - In: STAR PROTOCOLS. - ISSN 2666-1667. - 3:4(2022). [10.1016/j.xpro.2022.101887]

Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach

Mastropietro, Andrea
Primo
;
Pasculli, Giuseppe
Secondo
;
2022

Abstract

Here we present EdgeSHAPer, a workflow for explaining graph neural networks by approximating Shapley values using Monte Carlo sampling. In this protocol, we describe steps to execute Python scripts for a chemical dataset from the original publication; however, this approach is also applicable to any user-provided dataset. We also detail steps encompassing neural network training, an explanation phase, and analysis via feature mapping.
2022
chemoinformatics; graph neural networks; explainable artificial intelligence
01 Pubblicazione su rivista::01a Articolo in rivista
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach / Mastropietro, Andrea; Pasculli, Giuseppe; Bajorath, Jürgen. - In: STAR PROTOCOLS. - ISSN 2666-1667. - 3:4(2022). [10.1016/j.xpro.2022.101887]
File allegati a questo prodotto
File Dimensione Formato  
Mastropietro_Protocol_2022.pdf

accesso aperto

Note: Full text dell'articolo "Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach".
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1661039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact