Lentil (Lens culinaris) is a high-protein crop with a promising potential as a plant-based protein source for human nutrition. This study investigated nutritional and anti-nutritional properties of whole seed lentil flour (LF) compared to lentil protein isolates (LPIs) prepared in pilot-scale by isoelectric precipitation (LPI–IEP) and ul-trafiltration (LPI–UF). Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) profiles showed significant reductions in total galacto-oligosaccharides (GOS) contents by 58% and 91% in LPI–IEP and LPI–UF, respectively, compared to LF. Trypsin inhibitor activity (TIA) levels based on dry protein mass were lowered by 81% in LPI–IEP and 87% in LPI–UF relative to LF. Depending on the stage of digestion, the in vitro protein digestibility (IVPD) of LPIs was improved by 35–53% compared to LF, with both products showing a similar long-term protein digestibility to that of bovine serum albumin (BSA). This work supports the use of purified LPI products as a novel source of high quality protein for food applications.
Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing / Joehnke, Marcel Skejovic; Jeske, Stephanie; Ispiryan, Lilit; Zannini, Emanuele; Arendt, Elke K.; Bez, Jurgen; Sorensen, Jens Christian; Petersen, Iben Lykke. - In: FOOD CHEMISTRY X. - ISSN 2590-1575. - 9:(2021). [10.1016/j.fochx.2020.100112]
Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing
Zannini, Emanuele;
2021
Abstract
Lentil (Lens culinaris) is a high-protein crop with a promising potential as a plant-based protein source for human nutrition. This study investigated nutritional and anti-nutritional properties of whole seed lentil flour (LF) compared to lentil protein isolates (LPIs) prepared in pilot-scale by isoelectric precipitation (LPI–IEP) and ul-trafiltration (LPI–UF). Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) profiles showed significant reductions in total galacto-oligosaccharides (GOS) contents by 58% and 91% in LPI–IEP and LPI–UF, respectively, compared to LF. Trypsin inhibitor activity (TIA) levels based on dry protein mass were lowered by 81% in LPI–IEP and 87% in LPI–UF relative to LF. Depending on the stage of digestion, the in vitro protein digestibility (IVPD) of LPIs was improved by 35–53% compared to LF, with both products showing a similar long-term protein digestibility to that of bovine serum albumin (BSA). This work supports the use of purified LPI products as a novel source of high quality protein for food applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Joehnke_Nutritional_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


