We study the leader-following problem for linear stochastic multi-agent systems with uniform and constant communication delays on directed or undirected graphs. We consider both the state feedback and output feedback solutions. In the latter case, the agents can be a set of heterogeneous linear systems. By resorting to a new approach based on the scalar Lambert equation we obtain a constructive design with less conservative closed-form delay bounds. In particular, it is possible to compensate arbitrarily large delays if the agents are not unstable.
Stochastic Leader-Following for Heterogeneous Linear Agents with Communication Delays / Battilotti, Stefano; Cacace, Filippo; Califano, Claudia; D'Angelo, Massimiliano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 68:9(2023), pp. 5706-5713. [10.1109/TAC.2022.3225133]
Stochastic Leader-Following for Heterogeneous Linear Agents with Communication Delays
Stefano Battilotti
;Claudia Califano;Massimiliano d'Angelo
2023
Abstract
We study the leader-following problem for linear stochastic multi-agent systems with uniform and constant communication delays on directed or undirected graphs. We consider both the state feedback and output feedback solutions. In the latter case, the agents can be a set of heterogeneous linear systems. By resorting to a new approach based on the scalar Lambert equation we obtain a constructive design with less conservative closed-form delay bounds. In particular, it is possible to compensate arbitrarily large delays if the agents are not unstable.File | Dimensione | Formato | |
---|---|---|---|
Battilotti_postprint_Stochastic_2023.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
523.11 kB
Formato
Adobe PDF
|
523.11 kB | Adobe PDF | |
Battilotti_Stochastic_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
626.62 kB
Formato
Adobe PDF
|
626.62 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.