This work discusses an effective approach to find the optimal solution for constrained engineering design problems. Specifically, the computational platform herein implemented exploits a neural network and a differential evolution algorithm, and it leverages on a parametric finite element modelling for the fully automation of the design process. The presented approach is applied to the design of the rear flange of a low-pressure turbine casing for an aircraft engine, whose shape is optimized in order to reduce the manufacturing cost while preserving the overall integrity through the fulfilment of stress-based constraints.

Global Optimization of a Turbine Design via Neural Networks and an Evolutionary Algorithm / Gourishetty, Pk; Pesare, G; Lacarbonara, W; Quaranta, G. - 8:(2022), pp. 259-267. (Intervento presentato al convegno ODS, First Hybrid Conference tenutosi a Rome) [10.1007/978-3-030-95380-5_23].

Global Optimization of a Turbine Design via Neural Networks and an Evolutionary Algorithm

Gourishetty, PK;Lacarbonara, W;Quaranta, G
2022

Abstract

This work discusses an effective approach to find the optimal solution for constrained engineering design problems. Specifically, the computational platform herein implemented exploits a neural network and a differential evolution algorithm, and it leverages on a parametric finite element modelling for the fully automation of the design process. The presented approach is applied to the design of the rear flange of a low-pressure turbine casing for an aircraft engine, whose shape is optimized in order to reduce the manufacturing cost while preserving the overall integrity through the fulfilment of stress-based constraints.
2022
ODS, First Hybrid Conference
Global optimization; Differential evolution; Structural design; Parameter optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Global Optimization of a Turbine Design via Neural Networks and an Evolutionary Algorithm / Gourishetty, Pk; Pesare, G; Lacarbonara, W; Quaranta, G. - 8:(2022), pp. 259-267. (Intervento presentato al convegno ODS, First Hybrid Conference tenutosi a Rome) [10.1007/978-3-030-95380-5_23].
File allegati a questo prodotto
File Dimensione Formato  
Gourishetty_Global_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 561.83 kB
Formato Adobe PDF
561.83 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1660652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact