Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 ◦C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7–1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.

Syntheses of APTMS-coated ZnO: an investigation towards Penconazole detection / Maria Bauer, Elvira; Bogliardi, Gabriele; Ricci, Cosimo; Cecchetti, Daniele; De Caro, Tilde; Sennato, Simona; Nucara, Alessandro; Carbone, Marilena. - In: MATERIALS. - ISSN 1996-1944. - 15:22(2022), pp. 8050-8066. [10.3390/ma15228050]

Syntheses of APTMS-coated ZnO: an investigation towards Penconazole detection

Simona Sennato;Alessandro Nucara;
2022

Abstract

Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 ◦C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7–1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.
2022
Coated ZnO; APTMS; extrinsic chemiluminescence; penconazole detection
01 Pubblicazione su rivista::01a Articolo in rivista
Syntheses of APTMS-coated ZnO: an investigation towards Penconazole detection / Maria Bauer, Elvira; Bogliardi, Gabriele; Ricci, Cosimo; Cecchetti, Daniele; De Caro, Tilde; Sennato, Simona; Nucara, Alessandro; Carbone, Marilena. - In: MATERIALS. - ISSN 1996-1944. - 15:22(2022), pp. 8050-8066. [10.3390/ma15228050]
File allegati a questo prodotto
File Dimensione Formato  
Nucara_Penconazole-detection_2022.pdf

accesso aperto

Note: Articolo completo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1659891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact