In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.
Blended numerical schemes for the advection equation and conservation laws / Cacace, S.; Cristiani, E.; Ferretti, R.. - In: ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. - ISSN 2822-7840. - 51:3(2017), pp. 997-1019. [10.1051/m2an/2016047]
Blended numerical schemes for the advection equation and conservation laws
Cacace S.
;
2017
Abstract
In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.File | Dimensione | Formato | |
---|---|---|---|
Cacace_preprint_Blended-numerical_2017.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
860.93 kB
Formato
Adobe PDF
|
860.93 kB | Adobe PDF | |
Cacace_Blended-numerical_2017.pdf.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
974.47 kB
Formato
Adobe PDF
|
974.47 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.