In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.

Blended numerical schemes for the advection equation and conservation laws / Cacace, S.; Cristiani, E.; Ferretti, R.. - In: ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. - ISSN 2822-7840. - 51:3(2017), pp. 997-1019. [10.1051/m2an/2016047]

Blended numerical schemes for the advection equation and conservation laws

Cacace S.
;
2017

Abstract

In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.
2017
Advection equation; conservation laws; coupled algorithms; filtered schemes; hyperbolic problems; multiscale numerical schemes; particle level-set method; particle-in-cell method; smoothed-particle hydrodynamics method; theta methods
01 Pubblicazione su rivista::01a Articolo in rivista
Blended numerical schemes for the advection equation and conservation laws / Cacace, S.; Cristiani, E.; Ferretti, R.. - In: ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. - ISSN 2822-7840. - 51:3(2017), pp. 997-1019. [10.1051/m2an/2016047]
File allegati a questo prodotto
File Dimensione Formato  
Cacace_preprint_Blended-numerical_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 860.93 kB
Formato Adobe PDF
860.93 kB Adobe PDF
Cacace_Blended-numerical_2017.pdf.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 974.47 kB
Formato Adobe PDF
974.47 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1659846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact