In this paper, we will consider the fractional Caffarelli-Kohn-Nirenb erg inequality & nbsp;lambda(integral(Rn)& nbsp;|u(x)|(p)/xI(beta P) dx)(2/p) <= integral(Rn)integral(Rn) (u(x) - u(y))(2)/ |x - y|(n+2 gamma)|x|(alpha)|y|(alpha) dy dx & nbsp;where gamma is an element of (0, 1), n & nbsp;>= 2, and alpha, beta & nbsp;is an element of R satisfy & nbsp;alpha & nbsp;<= beta & nbsp;<= alpha + gamma, -2 gamma < alpha < n - 2 gamma/2,& nbsp;and the exponent p is chosen to be & nbsp;p = 2n/n- 2 gamma + 2(beta - alpha),& nbsp;such that the inequality is invariant under scaling. We first study the existence and nonexistence of extremal solutions. Our next goal is to show some results on the symmetry and symmetry breaking region for the minimizers; these suggest the existence of a Felli-Schneider type curve separating both regions but, surprisingly, we find a novel behavior as alpha & nbsp;-> -2 gamma. The main idea in the proofs, as in the classical case, is to reformulate the fractional Caffarelli-Kohn-Nirenb erg inequality in cylindrical variables. Then, in order to find the radially symmetric solutions we need to solve a non-local ODE.& nbsp;For this equation we also get uniqueness of minimizers in the radial symmetry class; indeed, we show that the unique continuation argument of Frank-Lenzmann (Acta'13) can be applied to more general operators with good spectral properties. We provide, in addition, a completely new proof of non-degeneracy which works for all critical points. It is based on the variation of constants approach and the non local Wronskian of Ao-Chan-DelaTorre-Fontelos-Gonzalez-Wei (Duke'19). (C) 2022 Elsevier Inc. All rights reserved.

Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality / Weiwei, Ao; DE LA TORRE PEDRAZA, Azahara; Mar('(i))a del Mar Gonz('(a))lez,. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 282:11(2022). [10.1016/j.jfa.2022.109438]

Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality

Azahara DelaTorre;
2022

Abstract

In this paper, we will consider the fractional Caffarelli-Kohn-Nirenb erg inequality & nbsp;lambda(integral(Rn)& nbsp;|u(x)|(p)/xI(beta P) dx)(2/p) <= integral(Rn)integral(Rn) (u(x) - u(y))(2)/ |x - y|(n+2 gamma)|x|(alpha)|y|(alpha) dy dx & nbsp;where gamma is an element of (0, 1), n & nbsp;>= 2, and alpha, beta & nbsp;is an element of R satisfy & nbsp;alpha & nbsp;<= beta & nbsp;<= alpha + gamma, -2 gamma < alpha < n - 2 gamma/2,& nbsp;and the exponent p is chosen to be & nbsp;p = 2n/n- 2 gamma + 2(beta - alpha),& nbsp;such that the inequality is invariant under scaling. We first study the existence and nonexistence of extremal solutions. Our next goal is to show some results on the symmetry and symmetry breaking region for the minimizers; these suggest the existence of a Felli-Schneider type curve separating both regions but, surprisingly, we find a novel behavior as alpha & nbsp;-> -2 gamma. The main idea in the proofs, as in the classical case, is to reformulate the fractional Caffarelli-Kohn-Nirenb erg inequality in cylindrical variables. Then, in order to find the radially symmetric solutions we need to solve a non-local ODE.& nbsp;For this equation we also get uniqueness of minimizers in the radial symmetry class; indeed, we show that the unique continuation argument of Frank-Lenzmann (Acta'13) can be applied to more general operators with good spectral properties. We provide, in addition, a completely new proof of non-degeneracy which works for all critical points. It is based on the variation of constants approach and the non local Wronskian of Ao-Chan-DelaTorre-Fontelos-Gonzalez-Wei (Duke'19). (C) 2022 Elsevier Inc. All rights reserved.
2022
Fractional Caffarelli-Kohn-Nirenberg inequality; symmetry and symmetry breaking; conformal fractional Laplacian; non-degeneracy
01 Pubblicazione su rivista::01a Articolo in rivista
Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality / Weiwei, Ao; DE LA TORRE PEDRAZA, Azahara; Mar('(i))a del Mar Gonz('(a))lez,. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 282:11(2022). [10.1016/j.jfa.2022.109438]
File allegati a questo prodotto
File Dimensione Formato  
Ao_Symmetry_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 774.04 kB
Formato Adobe PDF
774.04 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1659803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact