Within the paradigm of smart mobility, the development of innovative materials aimed at improving resilience against structural failure in lightweight vehicles and electromagnetic interferences (EMI) due to wireless communications in guidance systems is of crucial relevance to improve safety, sustainability, and reliability in both aeronautical and automotive applications. In particular, the integration of intelligent structural health monitoring and electromagnetic (EM) shielding systems with radio frequency absorbing properties into a polymer composite laminate is still a challenge. In this paper, we present an innovative system consisting of a multi-layered thin panel which integrates nanostructured coatings to combine EM disturbance suppression and low-energy impact monitoring ability. Specifically, it is composed of a stack of dielectric and conductive layers constituting the sensing and EM-absorbing laminate (SEAL). The conductive layers are made of a polyurethane paint filled with graphene nanoplatelets (GNPs) at different concentrations to tailor the effective electrical conductivity and the functionality of the material. Basically, the panel includes a piezoresistive grid, obtained by selectively spraying onto mylar a low-conductive paint with 4.5 wt.% of GNPs and an EM-absorbing lossy sheet made of the same polyurethane paint but properly modified with a higher weight fraction (8 wt.%) of graphene. The responses of the grid's strain sensors were analyzed through quasi-static mechanical bending tests, whereas the absorbing properties were evaluated through free-space and waveguide-based measurement techniques in the X, Ku, K, and Ka bands. The experimental results were also validated by numerical simulations.

New sensing and radar absorbing laminate combining structural damage detection and electromagnetic wave absorption properties / Cozzolino, Federico; Marra, Fabrizio; Fortunato, Marco; Bellagamba, Irene; Pesce, Nicola; Tamburrano, Alessio; Sarto, Maria Sabrina. - In: SENSORS. - ISSN 1424-8220. - 22:21(2022), pp. 1-17. [10.3390/s22218470]

New sensing and radar absorbing laminate combining structural damage detection and electromagnetic wave absorption properties

Federico Cozzolino;fabrizio Marra;MARCO FORTUNATO;Irene Bellagamba;Nicola Pesce;Alessio Tamburrano;Maria Sabrina Sarto
2022

Abstract

Within the paradigm of smart mobility, the development of innovative materials aimed at improving resilience against structural failure in lightweight vehicles and electromagnetic interferences (EMI) due to wireless communications in guidance systems is of crucial relevance to improve safety, sustainability, and reliability in both aeronautical and automotive applications. In particular, the integration of intelligent structural health monitoring and electromagnetic (EM) shielding systems with radio frequency absorbing properties into a polymer composite laminate is still a challenge. In this paper, we present an innovative system consisting of a multi-layered thin panel which integrates nanostructured coatings to combine EM disturbance suppression and low-energy impact monitoring ability. Specifically, it is composed of a stack of dielectric and conductive layers constituting the sensing and EM-absorbing laminate (SEAL). The conductive layers are made of a polyurethane paint filled with graphene nanoplatelets (GNPs) at different concentrations to tailor the effective electrical conductivity and the functionality of the material. Basically, the panel includes a piezoresistive grid, obtained by selectively spraying onto mylar a low-conductive paint with 4.5 wt.% of GNPs and an EM-absorbing lossy sheet made of the same polyurethane paint but properly modified with a higher weight fraction (8 wt.%) of graphene. The responses of the grid's strain sensors were analyzed through quasi-static mechanical bending tests, whereas the absorbing properties were evaluated through free-space and waveguide-based measurement techniques in the X, Ku, K, and Ka bands. The experimental results were also validated by numerical simulations.
2022
EMI suppression; aircraft; electromagnetic absorbing material; graphene-based paint; low observability; multifunctional system; piezoresistive strain sensors; sensor array; structural health monitoring
01 Pubblicazione su rivista::01a Articolo in rivista
New sensing and radar absorbing laminate combining structural damage detection and electromagnetic wave absorption properties / Cozzolino, Federico; Marra, Fabrizio; Fortunato, Marco; Bellagamba, Irene; Pesce, Nicola; Tamburrano, Alessio; Sarto, Maria Sabrina. - In: SENSORS. - ISSN 1424-8220. - 22:21(2022), pp. 1-17. [10.3390/s22218470]
File allegati a questo prodotto
File Dimensione Formato  
Cozzolino_New sensing_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 9.06 MB
Formato Adobe PDF
9.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1659790
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact