This paper presents a Generative Design Method (GDM) for highly customised Cultural Heritage applications concerning the exhibition and conservation of pottery. As a fundamental requirement, archaeological finds must be preserved in their structural integrity. Additionally, when present, the exposition supports must be aesthetically pleasant meaning that they must be non-invasive in the field of view of the observer. Furthermore, each artefact presents a unique geometry, hence its supporting structure must be designed accordingly. The proposed GDM considers these requirements, adopting a synergy of CAD, CAE, and optimisation tools. It is developed through two phases. The first phase, P1, concerns with the structural integrity of the fragment. In this phase, a Parametric Modelling approach is chosen for its ease of use both in the Finite Element Analysis evaluations of artefacts and in the design and optimisations of feasible supporting structures. The output of the phase P1 is the optimised configuration of the functional elements of the support ('Ci') which are the interface region between the support itself and the fragment of pottery. They represent the input of the second phase, P2, that aims to generate lightweight concepts for the complete supporting structure considering the optimal 'Ci' configuration. During this phase, an aesthetics criterion (related to the minimisation of the support's visibility) is also considered to achieve non-invasive supporting structures. Doing so, the GDM provides informed decisions in the early stages of the design activities with a simulation driven approach oriented to manufacturing. In this way, users are able to focus on design requirements since the concept's variants are generated by means of an optimised configuration of standardised components ('Ci') and obstacle geometries.
A generative design method for cultural heritage applications: design of supporting structures for artefacts / Belluomo, Luca; Bici, Michele; Campana, Francesca. - In: COMPUTER-AIDED DESIGN AND APPLICATIONS. - ISSN 1686-4360. - 20:4(2023), pp. 663-681. [10.14733/cadaps.2023.663-681]
A generative design method for cultural heritage applications: design of supporting structures for artefacts
Luca Belluomo
;Michele Bici;Francesca Campana
2023
Abstract
This paper presents a Generative Design Method (GDM) for highly customised Cultural Heritage applications concerning the exhibition and conservation of pottery. As a fundamental requirement, archaeological finds must be preserved in their structural integrity. Additionally, when present, the exposition supports must be aesthetically pleasant meaning that they must be non-invasive in the field of view of the observer. Furthermore, each artefact presents a unique geometry, hence its supporting structure must be designed accordingly. The proposed GDM considers these requirements, adopting a synergy of CAD, CAE, and optimisation tools. It is developed through two phases. The first phase, P1, concerns with the structural integrity of the fragment. In this phase, a Parametric Modelling approach is chosen for its ease of use both in the Finite Element Analysis evaluations of artefacts and in the design and optimisations of feasible supporting structures. The output of the phase P1 is the optimised configuration of the functional elements of the support ('Ci') which are the interface region between the support itself and the fragment of pottery. They represent the input of the second phase, P2, that aims to generate lightweight concepts for the complete supporting structure considering the optimal 'Ci' configuration. During this phase, an aesthetics criterion (related to the minimisation of the support's visibility) is also considered to achieve non-invasive supporting structures. Doing so, the GDM provides informed decisions in the early stages of the design activities with a simulation driven approach oriented to manufacturing. In this way, users are able to focus on design requirements since the concept's variants are generated by means of an optimised configuration of standardised components ('Ci') and obstacle geometries.File | Dimensione | Formato | |
---|---|---|---|
Belluomo_A-generative_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
738.07 kB
Formato
Adobe PDF
|
738.07 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.