The grading of cancer tissues is still one of the main challenges for pathologists. The development of enhanced analysis strategies hence becomes crucial to accurately identify and further deal with each individual case. Raman spectroscopy (RS) is a promising tool for the classification of tumor tissues as it allows us to obtain the biochemical maps of the tissues under analysis and to observe their evolution in terms of biomolecules, proteins, lipid structures, DNA, vitamins, and so on. However, its potential could be further improved by providing a classification system which would be able to recognize the sample tumor category by taking as input the raw Raman spectroscopy signal; this could provide more reliable responses in shorter time scales and could reduce or eliminate false-positive or -negative diagnoses. Deep Learning techniques have become ubiquitous in recent years, with models able to perform classification with high accuracy in most diverse fields of research, e.g., natural language processing, computer vision, medical imaging. However, deep models often rely on huge labeled datasets to produce reasonable accuracy, otherwise occurring in overfitting issues when the training data is insufficient. In this paper, we propose a chondrogenic tumor CLAssification through wavelet transform of RAman spectra (CLARA), which is able to classify with high accuracy Raman spectra obtained from bone tissues. CLARA recognizes and grades the tumors in the evaluated dataset with 97% accuracy by exploiting a classification pipeline consisting of the division of the original task in two binary classification steps, where the first is performed on the original RS signals while the latter is accomplished through the use of a hybrid temporal-frequency 2D transform.

Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra / Manganelli Conforti, Pietro; D'Acunto, Mario; Russo, Paolo. - In: SENSORS. - ISSN 1424-8220. - 22:19(2022). [10.3390/s22197492]

Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra

Pietro Manganelli Conforti
Primo
Investigation
;
PAOLO RUSSO
Ultimo
Conceptualization
2022

Abstract

The grading of cancer tissues is still one of the main challenges for pathologists. The development of enhanced analysis strategies hence becomes crucial to accurately identify and further deal with each individual case. Raman spectroscopy (RS) is a promising tool for the classification of tumor tissues as it allows us to obtain the biochemical maps of the tissues under analysis and to observe their evolution in terms of biomolecules, proteins, lipid structures, DNA, vitamins, and so on. However, its potential could be further improved by providing a classification system which would be able to recognize the sample tumor category by taking as input the raw Raman spectroscopy signal; this could provide more reliable responses in shorter time scales and could reduce or eliminate false-positive or -negative diagnoses. Deep Learning techniques have become ubiquitous in recent years, with models able to perform classification with high accuracy in most diverse fields of research, e.g., natural language processing, computer vision, medical imaging. However, deep models often rely on huge labeled datasets to produce reasonable accuracy, otherwise occurring in overfitting issues when the training data is insufficient. In this paper, we propose a chondrogenic tumor CLAssification through wavelet transform of RAman spectra (CLARA), which is able to classify with high accuracy Raman spectra obtained from bone tissues. CLARA recognizes and grades the tumors in the evaluated dataset with 97% accuracy by exploiting a classification pipeline consisting of the division of the original task in two binary classification steps, where the first is performed on the original RS signals while the latter is accomplished through the use of a hybrid temporal-frequency 2D transform.
2022
cancer tissues classification; chondrogenic tumors; deep learning; raman spectroscopy; Spectrum Analysis, Raman; Wavelet Analysis; Deep Learning
01 Pubblicazione su rivista::01a Articolo in rivista
Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra / Manganelli Conforti, Pietro; D'Acunto, Mario; Russo, Paolo. - In: SENSORS. - ISSN 1424-8220. - 22:19(2022). [10.3390/s22197492]
File allegati a questo prodotto
File Dimensione Formato  
ManganelliConforti_Deep-Learning_2022.pdf

accesso aperto

Note: Pubblicazione su Rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 296.04 kB
Formato Adobe PDF
296.04 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1658838
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact