CUPID will be a next generation experiment searching for the neutrinoless double beta decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNOS, CUPID aims to reach a background free environment by means of scintillating (Li2MoO4)-Mo-100 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of alpha particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 +/- 0.2) keV FWHM at the Q-value of Mo-100 (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors' mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an a particle rejection higher than 99.9%, fully satisfying the requirements for CUPID.

Optimization of the first CUPID detector module

Bellini, F;Dompe, V;Fantini, G;Milana, S;Ressa, A;
2022

Abstract

CUPID will be a next generation experiment searching for the neutrinoless double beta decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNOS, CUPID aims to reach a background free environment by means of scintillating (Li2MoO4)-Mo-100 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of alpha particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 +/- 0.2) keV FWHM at the Q-value of Mo-100 (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors' mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an a particle rejection higher than 99.9%, fully satisfying the requirements for CUPID.
File allegati a questo prodotto
File Dimensione Formato  
Bellini_CUPID-detector_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1658119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact