Medical images play an important role in medical diagnosis and treatment. Oncologists analyze images to determine the different characteristics of deadly diseases, plan the therapy, and observe the evolution of the disease. The objective of this paper is to propose a method for the detection of brain tumors. Brain tumors are identified from Magnetic Resonance (MR) images by performing suitable segmentation procedures. The latest technical literature concerning radiographic images of the brain shows that deep learning methods can be implemented to extract specific features of brain tumors, aiding clinical diagnosis. For this reason, most data scientists and AI researchers work on Machine Learning methods for designing automatic screening procedures. Indeed, an automated method would result in quicker segmentation findings, providing a robust output with respect to possible differences in data sources, mostly due to different procedures in data recording and storing, resulting in a more consistent identification of brain tumors. To improve the performance of the segmentation procedure, new architectures are proposed and tested in this paper. We propose deep neural networks for the detection of brain tumors, trained on the MRI scans of patients’ brains. The proposed architectures are based on convolutional neural networks and inception modules for brain tumor segmentation. A comparison of these proposed architectures with the baseline reference ones shows very interesting results. MI-Unet showed a performance increase in comparison to baseline Unet architecture by 7.5% in dice score, 23.91% insensitivity, and 7.09% in specificity. Depth-wise separable MI-Unet showed a performance increase by 10.83% in dice score, 2.97% in sensitivity, and 12.72% in specificity as compared to the baseline Unet architecture. Hybrid Unet architecture achieved performance improvement of 9.71% in dice score, 3.56% in sensitivity, and 12.6% in specificity. Whereas the depth-wise separable hybrid Unet architecture outperformed the baseline architecture by 15.45% in dice score, 20.56% in sensitivity, and 12.22% in specificity.

Deep learning hybrid techniques for brain tumor segmentation / Munir, Khushboo; Frezza, Fabrizio; Rizzi, Antonello. - In: SENSORS. - ISSN 1424-8220. - 22:21(2022), pp. 1-26. [10.3390/s22218201]

Deep learning hybrid techniques for brain tumor segmentation

Khushboo Munir
;
Fabrizio Frezza;Antonello Rizzi
2022

Abstract

Medical images play an important role in medical diagnosis and treatment. Oncologists analyze images to determine the different characteristics of deadly diseases, plan the therapy, and observe the evolution of the disease. The objective of this paper is to propose a method for the detection of brain tumors. Brain tumors are identified from Magnetic Resonance (MR) images by performing suitable segmentation procedures. The latest technical literature concerning radiographic images of the brain shows that deep learning methods can be implemented to extract specific features of brain tumors, aiding clinical diagnosis. For this reason, most data scientists and AI researchers work on Machine Learning methods for designing automatic screening procedures. Indeed, an automated method would result in quicker segmentation findings, providing a robust output with respect to possible differences in data sources, mostly due to different procedures in data recording and storing, resulting in a more consistent identification of brain tumors. To improve the performance of the segmentation procedure, new architectures are proposed and tested in this paper. We propose deep neural networks for the detection of brain tumors, trained on the MRI scans of patients’ brains. The proposed architectures are based on convolutional neural networks and inception modules for brain tumor segmentation. A comparison of these proposed architectures with the baseline reference ones shows very interesting results. MI-Unet showed a performance increase in comparison to baseline Unet architecture by 7.5% in dice score, 23.91% insensitivity, and 7.09% in specificity. Depth-wise separable MI-Unet showed a performance increase by 10.83% in dice score, 2.97% in sensitivity, and 12.72% in specificity as compared to the baseline Unet architecture. Hybrid Unet architecture achieved performance improvement of 9.71% in dice score, 3.56% in sensitivity, and 12.6% in specificity. Whereas the depth-wise separable hybrid Unet architecture outperformed the baseline architecture by 15.45% in dice score, 20.56% in sensitivity, and 12.22% in specificity.
2022
brain tumors; clinical diagnosis; convolutional neural networks; artificial intelligence; deep learning
01 Pubblicazione su rivista::01a Articolo in rivista
Deep learning hybrid techniques for brain tumor segmentation / Munir, Khushboo; Frezza, Fabrizio; Rizzi, Antonello. - In: SENSORS. - ISSN 1424-8220. - 22:21(2022), pp. 1-26. [10.3390/s22218201]
File allegati a questo prodotto
File Dimensione Formato  
Munir_Deep-Learning_2022.pdf

accesso aperto

Note: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1657761
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact