The statistical properties of seismicity are known to be affected by several factors such as the rheological parameters of rocks. We analysed the earthquake double-couple as a function of the faulting type. Here we show that it impacts the moment tensors of earthquakes: thrust-faulting events are characterized by higher double-couple components with respect to strike-slip- and normal-faulting earthquakes. Our results are coherent with the stress dependence of the scaling exponent of the Gutenberg-Richter law, which is anticorrelated to the double-couple. We suggest that the structural and tectonic control of seismicity may have its origin in the complexity of the seismogenic source marked by the width of the cataclastic damage zone and by the slip of different fault planes during the same seismic event; the sharper and concentrated the slip as along faults, the higher the double-couple. This phenomenon may introduce bias in magnitude estimation, with possible impact on seismic forecasting.

The impact of faulting complexity and type on earthquake rupture dynamics / Zaccagnino, Davide; Doglioni, Carlo. - In: COMMUNICATIONS EARTH & ENVIRONMENT. - ISSN 2662-4435. - 3:(2022). [10.1038/s43247-022-00593-5]

The impact of faulting complexity and type on earthquake rupture dynamics

Davide Zaccagnino
Primo
;
Carlo Doglioni
Secondo
2022

Abstract

The statistical properties of seismicity are known to be affected by several factors such as the rheological parameters of rocks. We analysed the earthquake double-couple as a function of the faulting type. Here we show that it impacts the moment tensors of earthquakes: thrust-faulting events are characterized by higher double-couple components with respect to strike-slip- and normal-faulting earthquakes. Our results are coherent with the stress dependence of the scaling exponent of the Gutenberg-Richter law, which is anticorrelated to the double-couple. We suggest that the structural and tectonic control of seismicity may have its origin in the complexity of the seismogenic source marked by the width of the cataclastic damage zone and by the slip of different fault planes during the same seismic event; the sharper and concentrated the slip as along faults, the higher the double-couple. This phenomenon may introduce bias in magnitude estimation, with possible impact on seismic forecasting.
2022
moment tensors; magnitude estimation; seismogenic source; complexity of the seismogenic source; tectonic setting
01 Pubblicazione su rivista::01a Articolo in rivista
The impact of faulting complexity and type on earthquake rupture dynamics / Zaccagnino, Davide; Doglioni, Carlo. - In: COMMUNICATIONS EARTH & ENVIRONMENT. - ISSN 2662-4435. - 3:(2022). [10.1038/s43247-022-00593-5]
File allegati a questo prodotto
File Dimensione Formato  
Zaccagnino_The impact_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1657726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact