Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, Poincaré invariant, and weakly coupled, and that admit states that on the one hand are perfectly homogeneous down to arbitrarily short scales, and on the other hand have the same infrared dynamics as isotropic solids. All three examples presented here lead to the same peculiar solid at low energies, featuring very constrained interactions and transverse phonons that always propagate at the speed of light. In particular, they violate the well known c_L^2 > (4/3) c_T^2 bound, thus showing that it is possible to have a healthy renormalizable theory that at low energies exhibits a negative bulk modulus (we discuss how the associated instabilities are absent in the presence of suitable boundary conditions). We do not know whether such peculiarities are unavoidable features of large scale solid-like behavior in the absence of short scale inhomogeneities, or whether they simply reflect the limits of our imagination.
Solidity without inhomogeneity: perfectly homogeneous, weakly coupled, UV-complete solids / Esposito, Angelo; Krichevsky, Rafael; Nicolis, Alberto. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - (2020). [10.1007/JHEP11(2020)021]
Solidity without inhomogeneity: perfectly homogeneous, weakly coupled, UV-complete solids
Angelo Esposito;Alberto Nicolis
2020
Abstract
Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, Poincaré invariant, and weakly coupled, and that admit states that on the one hand are perfectly homogeneous down to arbitrarily short scales, and on the other hand have the same infrared dynamics as isotropic solids. All three examples presented here lead to the same peculiar solid at low energies, featuring very constrained interactions and transverse phonons that always propagate at the speed of light. In particular, they violate the well known c_L^2 > (4/3) c_T^2 bound, thus showing that it is possible to have a healthy renormalizable theory that at low energies exhibits a negative bulk modulus (we discuss how the associated instabilities are absent in the presence of suitable boundary conditions). We do not know whether such peculiarities are unavoidable features of large scale solid-like behavior in the absence of short scale inhomogeneities, or whether they simply reflect the limits of our imagination.File | Dimensione | Formato | |
---|---|---|---|
Esposito_Solidity-without-inhomogeneity_2020.pdf
accesso aperto
Note: versione rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
332.7 kB
Formato
Adobe PDF
|
332.7 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.