In this work, we formulate Newron:a generalization of the McCulloch-Pitts neuron structure. This new framework aims to explore additional desirable properties of artificial neurons. We show that some specializations of Newronallow the network to be interpretable without affecting their expressiveness. We can understand the rules governing the task by just inspecting the models produced by our Newnon-based networks. Extensive experiments show that the quality of the generated models is better than traditional interpretable models and in line or better than standard neural networks.

NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks / Siciliano, Federico; Bucarelli, Maria Sofia; Tolomei, Gabriele; Silvestri, Fabrizio. - (2022), pp. 01-17. (Intervento presentato al convegno IEEE International Joint Conference on Neural Networks tenutosi a Padova; Italia) [10.1109/IJCNN55064.2022.9892367].

NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks

Siciliano, Federico;Bucarelli, Maria Sofia;Tolomei, Gabriele;Silvestri, Fabrizio
2022

Abstract

In this work, we formulate Newron:a generalization of the McCulloch-Pitts neuron structure. This new framework aims to explore additional desirable properties of artificial neurons. We show that some specializations of Newronallow the network to be interpretable without affecting their expressiveness. We can understand the rules governing the task by just inspecting the models produced by our Newnon-based networks. Extensive experiments show that the quality of the generated models is better than traditional interpretable models and in line or better than standard neural networks.
2022
IEEE International Joint Conference on Neural Networks
Neural and Evolutionary Computing; Artificial Intelligence; Machine Learning; FOS: Computer and information sciences, Trustworthy and explainable ai
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
NEWRON: A New Generalization of the Artificial Neuron to Enhance the Interpretability of Neural Networks / Siciliano, Federico; Bucarelli, Maria Sofia; Tolomei, Gabriele; Silvestri, Fabrizio. - (2022), pp. 01-17. (Intervento presentato al convegno IEEE International Joint Conference on Neural Networks tenutosi a Padova; Italia) [10.1109/IJCNN55064.2022.9892367].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1657031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact