On the slow path to improving the life expectancy and quality of life of patients post spinal cord injury (SCI), recovery remains controversial. The potential role of the regenerative capacity of the nervous system has led to numerous attempts to stimulate the SCI to re-establish the interrupted sensorimotor loop and to understand its potential in the recovery process. Numerous resources are now available, from pharmacological to biomolecular approaches and from neuromodulation to sensorimotor rehabilitation interventions based on the use of various neural interfaces, exoskeletons, and virtual reality applications. The integration of existing resources seems to be a promising field of research, especially from the perspective of improving living conditions in the short to medium term. Goals such as reducing chronic forms of neuropathic pain, regaining control over certain physiological activities, and enhancing residual abilities are often more urgent than complete functional recovery. In this perspective article, we provide an overview of the latest interventions for the treatment of SCI through broad phases of injury rehabilitation. The underlying intention of this work is to introduce a spinal cord neuroplasticity-based multimodal approach to promote functional recovery and improve quality of life after SCI. Nonetheless, when used separately, biomolecular therapeutic approaches have been shown to have modest outcomes.

Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord / Leemhuis, Erik; Favieri, Francesca; Forte, Giuseppe; Pazzaglia, Mariella. - In: BIOMEDICINES. - ISSN 2227-9059. - 10:10(2022), p. 2563. [10.3390/biomedicines10102563]

Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord

Erik Leemhuis;Francesca Favieri;Giuseppe Forte;Mariella Pazzaglia
2022

Abstract

On the slow path to improving the life expectancy and quality of life of patients post spinal cord injury (SCI), recovery remains controversial. The potential role of the regenerative capacity of the nervous system has led to numerous attempts to stimulate the SCI to re-establish the interrupted sensorimotor loop and to understand its potential in the recovery process. Numerous resources are now available, from pharmacological to biomolecular approaches and from neuromodulation to sensorimotor rehabilitation interventions based on the use of various neural interfaces, exoskeletons, and virtual reality applications. The integration of existing resources seems to be a promising field of research, especially from the perspective of improving living conditions in the short to medium term. Goals such as reducing chronic forms of neuropathic pain, regaining control over certain physiological activities, and enhancing residual abilities are often more urgent than complete functional recovery. In this perspective article, we provide an overview of the latest interventions for the treatment of SCI through broad phases of injury rehabilitation. The underlying intention of this work is to introduce a spinal cord neuroplasticity-based multimodal approach to promote functional recovery and improve quality of life after SCI. Nonetheless, when used separately, biomolecular therapeutic approaches have been shown to have modest outcomes.
2022
spinal cord injury; neuroplasticity; spinal cord stimulation; neuroregeneration; stem cell therapy; nanomaterials; hydrogel; regenerative medicine
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord / Leemhuis, Erik; Favieri, Francesca; Forte, Giuseppe; Pazzaglia, Mariella. - In: BIOMEDICINES. - ISSN 2227-9059. - 10:10(2022), p. 2563. [10.3390/biomedicines10102563]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1657018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact