We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(σ). These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z2. Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization.

Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo / Apollonio, Valentina; D’Autilia, Roberto; Scoppola, Benedetto; Scoppola, Elisabetta; Troiani, Alessio. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 189:3(2022). [10.1007/s10955-022-03004-3]

Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo

Apollonio, Valentina;D’Autilia, Roberto;Scoppola, Benedetto;Scoppola, Elisabetta;Troiani, Alessio
2022

Abstract

We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(σ). These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z2. Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization.
2022
Probabilistic cellular automata; Parallel dynamics; Ising model; Lattice systems; Monte Carlo combinatorial optimization
01 Pubblicazione su rivista::01a Articolo in rivista
Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo / Apollonio, Valentina; D’Autilia, Roberto; Scoppola, Benedetto; Scoppola, Elisabetta; Troiani, Alessio. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 189:3(2022). [10.1007/s10955-022-03004-3]
File allegati a questo prodotto
File Dimensione Formato  
Troiani_Shaken Dynamics_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 757.25 kB
Formato Adobe PDF
757.25 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact