Pressure reduction in liquids may result in vaporization and bubble formation—a process known as cavitation. It is commonly observed in hydraulic machinery, ship propellers and even in the context of medical therapy within the human body. Although cavitation may be beneficial for the removal of malign tissue, in many cases it is unwanted due to its ability to erode nearly any material in close contact. The current understanding is that the origins of heterogeneous cavitation are nucleation sites where stable gas cavities reside, for example, on contaminant particles, submerged surfaces or shell-stabilized microscopic bubbles1,2. Here we present the discovery of an atomically smooth interface between two immiscible liquids acting as a nucleation site. The non-polar liquid has a higher gas solubility and, upon pressure reduction, it acts as a gas reservoir as gas accumulates at the interface. We describe experiments that reveal the formation of cavitation on non-polar droplets in contact with water, and elucidate the working mechanism that leads to the nucleation of gas pockets through simulations.

Heterogeneous cavitation from atomically smooth liquid–liquid interfaces / Pfeiffer, Patricia; Shahrooz, Meysam; Tortora, Marco; Casciola, Carlo Massimo; Holman, Ryan; Salomir, Rares; Meloni, Simone; Ohl, Claus-Dieter. - In: NATURE PHYSICS. - ISSN 1745-2473. - 18:12(2022), pp. 1431-1435. [10.1038/s41567-022-01764-z]

Heterogeneous cavitation from atomically smooth liquid–liquid interfaces

Marco Tortora;Carlo Massimo Casciola;Simone Meloni;
2022

Abstract

Pressure reduction in liquids may result in vaporization and bubble formation—a process known as cavitation. It is commonly observed in hydraulic machinery, ship propellers and even in the context of medical therapy within the human body. Although cavitation may be beneficial for the removal of malign tissue, in many cases it is unwanted due to its ability to erode nearly any material in close contact. The current understanding is that the origins of heterogeneous cavitation are nucleation sites where stable gas cavities reside, for example, on contaminant particles, submerged surfaces or shell-stabilized microscopic bubbles1,2. Here we present the discovery of an atomically smooth interface between two immiscible liquids acting as a nucleation site. The non-polar liquid has a higher gas solubility and, upon pressure reduction, it acts as a gas reservoir as gas accumulates at the interface. We describe experiments that reveal the formation of cavitation on non-polar droplets in contact with water, and elucidate the working mechanism that leads to the nucleation of gas pockets through simulations.
2022
cavitation; atomically smooth; liquid-liquid; interfaces
01 Pubblicazione su rivista::01a Articolo in rivista
Heterogeneous cavitation from atomically smooth liquid–liquid interfaces / Pfeiffer, Patricia; Shahrooz, Meysam; Tortora, Marco; Casciola, Carlo Massimo; Holman, Ryan; Salomir, Rares; Meloni, Simone; Ohl, Claus-Dieter. - In: NATURE PHYSICS. - ISSN 1745-2473. - 18:12(2022), pp. 1431-1435. [10.1038/s41567-022-01764-z]
File allegati a questo prodotto
File Dimensione Formato  
Pfeiffer_Heterogeneous _2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656198
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact