e develop an ab initio method to simulate the infrared vibrational response of metallic systems in the framework of time-dependent density functional perturbation theory. By introducing a generalized frequency-dependent Born effective charge tensor, we show that phonon peaks in the reflectivity of metals can always be described by a Fano function, whose shape is determined by the complex nature of the frequency-dependent effective charges and electronic dielectric tensor. The IR vibrational properties of graphite, chosen as a representative test case to benchmark our method, are found to be accurately reproduced. Our approach offers a first-principles scheme for the prediction and understanding of IR reflectance spectra of metals, which may represent one of the few available tools of investigation of these materials when subjected to extremely high-pressure conditions.

First-principles theory of infrared vibrational spectroscopy of metals and semimetals. Application to graphite / Binci, L.; Barone, P.; Mauri, F.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 103:13(2021), pp. 1-10. [10.1103/PhysRevB.103.134304]

First-principles theory of infrared vibrational spectroscopy of metals and semimetals. Application to graphite

Binci, L.;Barone, P.;Mauri, F.
2021

Abstract

e develop an ab initio method to simulate the infrared vibrational response of metallic systems in the framework of time-dependent density functional perturbation theory. By introducing a generalized frequency-dependent Born effective charge tensor, we show that phonon peaks in the reflectivity of metals can always be described by a Fano function, whose shape is determined by the complex nature of the frequency-dependent effective charges and electronic dielectric tensor. The IR vibrational properties of graphite, chosen as a representative test case to benchmark our method, are found to be accurately reproduced. Our approach offers a first-principles scheme for the prediction and understanding of IR reflectance spectra of metals, which may represent one of the few available tools of investigation of these materials when subjected to extremely high-pressure conditions.
2021
spectroscopy; grafite; metals; first-principles calculations; first-principles calculations
01 Pubblicazione su rivista::01a Articolo in rivista
First-principles theory of infrared vibrational spectroscopy of metals and semimetals. Application to graphite / Binci, L.; Barone, P.; Mauri, F.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 103:13(2021), pp. 1-10. [10.1103/PhysRevB.103.134304]
File allegati a questo prodotto
File Dimensione Formato  
Binci_First-principles-theory_2021.pdf

solo gestori archivio

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 619.64 kB
Formato Adobe PDF
619.64 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact