We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing nonadiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.
Intrinsic vibrational angular momentum from nonadiabatic effects in noncollinear magnetic molecules / Bistoni, O.; Mauri, F.; Calandra, M.. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 126:22(2021), pp. 1-5. [10.1103/PhysRevLett.126.225703]
Intrinsic vibrational angular momentum from nonadiabatic effects in noncollinear magnetic molecules
Bistoni, O.;Mauri, F.;
2021
Abstract
We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing nonadiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.File | Dimensione | Formato | |
---|---|---|---|
Bistoni_Intrinsic-vibrational_2021.pdf
solo gestori archivio
Note: Articolo su rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
442.91 kB
Formato
Adobe PDF
|
442.91 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.