In recent years, we found that some multiscale methods applied to fractional differential problems, are easy and efficient to implement, when we use some fractional refinable functions introduced in the literature. In fact, these functions not only generate a multiresolution on R, but also have fractional (non-integer) derivative satisfying a very convenient recursive relation. For this reason, in this paper, we describe this class of refinable functions and focus our attention on their approximating properties.

Some results on a new refinable class suitable for fractional differential problems / Pezza, L.; L., Tallini. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - 6:9(2022), pp. 1-9. [10.3390/fractalfract6090521]

Some results on a new refinable class suitable for fractional differential problems

Pezza L.
Primo
;
2022

Abstract

In recent years, we found that some multiscale methods applied to fractional differential problems, are easy and efficient to implement, when we use some fractional refinable functions introduced in the literature. In fact, these functions not only generate a multiresolution on R, but also have fractional (non-integer) derivative satisfying a very convenient recursive relation. For this reason, in this paper, we describe this class of refinable functions and focus our attention on their approximating properties.
2022
Fractional refinable functions, fractional differential problems, colocation methods
01 Pubblicazione su rivista::01a Articolo in rivista
Some results on a new refinable class suitable for fractional differential problems / Pezza, L.; L., Tallini. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - 6:9(2022), pp. 1-9. [10.3390/fractalfract6090521]
File allegati a questo prodotto
File Dimensione Formato  
Pezza_Results on a New Refinable Class_2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 268.83 kB
Formato Adobe PDF
268.83 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact