Exact results on some modal properties of waveguides and resonators is studied, whose geometry is derived from "Šerpinskij carpet-like" prefractals (Serpinskij carpet and sponge; Menger sponge). The study is biased to the closed-form computation of specific resonances and eigenmodes (called "diaperiodic"), and to the relation existing between their topology and the existence of a finite set of transverse electromagnetic modes.

Spectral analysis of Šerpinskij carpet-like prefractal waveguides and resonators

Arrighetti W.
Primo
;
Gerosa G.
Ultimo
2005

Abstract

Exact results on some modal properties of waveguides and resonators is studied, whose geometry is derived from "Šerpinskij carpet-like" prefractals (Serpinskij carpet and sponge; Menger sponge). The study is biased to the closed-form computation of specific resonances and eigenmodes (called "diaperiodic"), and to the relation existing between their topology and the existence of a finite set of transverse electromagnetic modes.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656090
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 5
social impact