The common approach to topological quantum computation is to implement quantum gates by adiabatically moving non-Abelian anyons around each other. Here we present an alternative perspective based on the possibility of realizing the exchange (braiding) operators of anyons by adiabatically varying pairwise interactions between them rather than their positions. We analyze a system composed by four anyons whose couplings define a T junction, and we show that the braiding operator of two of them can be obtained through a particular adiabatic cycle in the space of the coupling parameters. We also discuss how to couple this scheme with anyonic chains in order to recover the topological protection.

Braiding of non-Abelian anyons using pairwise interactions

B. van Heck
Secondo
;
2013

Abstract

The common approach to topological quantum computation is to implement quantum gates by adiabatically moving non-Abelian anyons around each other. Here we present an alternative perspective based on the possibility of realizing the exchange (braiding) operators of anyons by adiabatically varying pairwise interactions between them rather than their positions. We analyze a system composed by four anyons whose couplings define a T junction, and we show that the braiding operator of two of them can be obtained through a particular adiabatic cycle in the space of the coupling parameters. We also discuss how to couple this scheme with anyonic chains in order to recover the topological protection.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact