We define a class of insulators with gapless surface states protected from localization due to the statistical properties of a disordered ensemble, namely, due to the ensemble's invariance under a certain symmetry. We show that these insulators are topological, and are protected by a Z 2 invariant. Finally, we prove that every topological insulator gives rise to an infinite number of classes of statistical topological insulators in higher dimensions. Our conclusions are confirmed by numerical simulations.

Statistical topological insulators

B. van Heck
Secondo
;
2014

Abstract

We define a class of insulators with gapless surface states protected from localization due to the statistical properties of a disordered ensemble, namely, due to the ensemble's invariance under a certain symmetry. We show that these insulators are topological, and are protected by a Z 2 invariant. Finally, we prove that every topological insulator gives rise to an infinite number of classes of statistical topological insulators in higher dimensions. Our conclusions are confirmed by numerical simulations.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655980
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 61
social impact