Analyzing language for social computing tasks requires looking beyond individual words. For example, the word “please” generally signals politeness, but more so together with modal verbs (“could you please...”) than without (“please do this.”). Combining semantics and syntax into rich textual patterns is essential to capturing these nuances. What are the relevant patterns for a task, and how to find them? NLP practitioners choose patterns informed by theory, and find them through computational models. However, few tools allow identifying rich patterns without NLP expertise. We introduce SENPAI, a novel tool that discovers combined semantic and syntactic patterns. SENPAI fuses neural embeddings, dependency parsing, and graph mining to surface patterns directly from data. We apply SENPAI to measure credibility, politeness, and sentiment in text. Quantitatively, models powered by SENPAI perform similarly to theoretically-motivated ones. Qualitatively, SENPAI discovers patterns that are interpretable and meaningful. SENPAI enables building computational models without NLP expertise and discovering new linguistic constructs.

SENPAI: Supporting exploratory text analysis through semantic & syntactic pattern inspection / Samory, M.; Mitra, T.. - (2019), pp. 452-462. (Intervento presentato al convegno 13th International Conference on Web and Social Media, ICWSM 2019 tenutosi a Munich, DE).

SENPAI: Supporting exploratory text analysis through semantic & syntactic pattern inspection

Samory M.;
2019

Abstract

Analyzing language for social computing tasks requires looking beyond individual words. For example, the word “please” generally signals politeness, but more so together with modal verbs (“could you please...”) than without (“please do this.”). Combining semantics and syntax into rich textual patterns is essential to capturing these nuances. What are the relevant patterns for a task, and how to find them? NLP practitioners choose patterns informed by theory, and find them through computational models. However, few tools allow identifying rich patterns without NLP expertise. We introduce SENPAI, a novel tool that discovers combined semantic and syntactic patterns. SENPAI fuses neural embeddings, dependency parsing, and graph mining to surface patterns directly from data. We apply SENPAI to measure credibility, politeness, and sentiment in text. Quantitatively, models powered by SENPAI perform similarly to theoretically-motivated ones. Qualitatively, SENPAI discovers patterns that are interpretable and meaningful. SENPAI enables building computational models without NLP expertise and discovering new linguistic constructs.
2019
13th International Conference on Web and Social Media, ICWSM 2019
senpai; semantic pattern; syntactic pattern; sensemaking; nlp
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
SENPAI: Supporting exploratory text analysis through semantic & syntactic pattern inspection / Samory, M.; Mitra, T.. - (2019), pp. 452-462. (Intervento presentato al convegno 13th International Conference on Web and Social Media, ICWSM 2019 tenutosi a Munich, DE).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1655748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact